chứng minh rằng : với mọi x thuộc z thì (x2+3x+3) ko chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
Ta có :
72 \(⋮\)12 \(\Rightarrow\)72n \(⋮\)12
48 \(⋮\)12
\(\Rightarrow\)72n + 48 \(⋮\)12
Ta lại có :
72 \(⋮\)9 \(\Rightarrow\)72n \(⋮\)9
48 \(⋮̸\)9
\(\Rightarrow\)72n + 48 \(⋮̸\)9
Vậy 72n + 48 chia hết cho 12 nhưng không chia hết cho 9
\(4x-xy+2y=3\)
\(\Rightarrow x\left(4-y\right)-8+2y=3-8\)
\(\Rightarrow x\left(4-y\right)-2\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(4-y\right)=-5\)
\(\Rightarrow\left(x-2\right)\left(y-4\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-4\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Tự xét bảng
\(3y-xy-2x-5=0\)
\(\Rightarrow y\left(3-x\right)-2x=5\)
\(\Rightarrow y\left(3-x\right)+6-2x=5+6\)
\(\Rightarrow y\left(3-x\right)+2\left(3-x\right)=11\)
\(\Rightarrow\left(y+1\right)\left(3-x\right)=11\)
\(\Rightarrow\left(3-x\right);\left(y+1\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Tự xét
\(2xy-x-y=100\)
\(\Rightarrow x\left(2y-1\right)-y=100\)
\(2x\left(2y-1\right)-\left(2y-1\right)=100+1\)
\(\left(2x-1\right)\left(2y-1\right)=101\)
\(\Rightarrow\left(2x-1\right);\left(2y-1\right)\inƯ\left(101\right)=\left\{\pm1;\pm101\right\}\)
Tự xét bảng
P/s : bài 3 có gì sai ko ?
Ta có 6x+11y chia hết cho 31
<=>6x+(11y+31y) chia hết cho 31( 31y chia hết cho 31)
<=>6x+42y chia hết cho 31
<=>6.(x+7y) chia hết cho 31
Ta có (6;31)=1
=> x+7y chia hết cho 31(đpcm)
2.(x-5)-3.(x-4)=-6+15.-3
\(2\left(x-5\right)-3\left(x-4\right)=-51\)
\(\left(2x-10\right)-\left(3x-12\right)=-51\)
\(2x-10-3x+12=-51\)
\(\left(2x-3x\right)+\left(-10+12\right)=-51\)
\(-x+2=-51\)
\(-x=-53\)
\(x=53\)
vậy x=53
chúc bạn học tốt like mình nha
6x+42y⋮31
=> 6x+11y+31y⋮31
Vì 31y⋮31⇒6x+11y⋮31
các thiên tài đi đâu hết rùi, bài này tui đăng thử xem sao thui mà ko có ai giải đc