Cho đường thẳng (d) : \(y=-\sqrt{3}x+\sqrt{3}m\) (m là tham số)
a. Tính khoảng cách từ gốc tọa độ đến (d)
b. Tìm m để khoảng cách từ gốc tọa độ đến (d) có đọ dài bằng 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y=x+m-1
=>x-y+m-1=0
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot1+0\cdot\left(-1\right)+m-1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|m-1\right|}{\sqrt{2}}\)
Để \(d\left(O;\left(d\right)\right)=3\sqrt{2}\) thì \(\dfrac{\left|m-1\right|}{\sqrt{2}}=3\sqrt{2}\)
=>|m-1|=6
=>\(\left[{}\begin{matrix}m-1=6\\m-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=7\\m=-5\end{matrix}\right.\)
Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?
Xét m=4 =>(d):y=1 =>Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1
Xét m=3 =>(d):x=-1=> Khoảng cách từ gốc tọa độ đến đt (d) khi đó là 1
Xét \(m\ne4;m\ne3\)
Gọi \(A=Ox\cap\left(d\right)\) \(\Rightarrow A\left(\dfrac{1}{m-4};0\right)\), \(B=Oy\cap\left(d\right)\Rightarrow B\left(0;\dfrac{1}{m-3}\right)\)
Gọi H là hình chiếu của O lên AB
Có \(OH^2=\dfrac{OA^2.OB^2}{OA^2+OB^2}=\dfrac{\left(\dfrac{1}{m-4}\right)^2.\left(\dfrac{1}{m-3}\right)^2}{\left(\dfrac{1}{m-4}\right)^2+\left(\dfrac{1}{m-3}\right)^2}\)
\(=\dfrac{1}{\left(m-4\right)^2\left(m-3\right)^2\left[\dfrac{1}{\left(m-4\right)^2}+\dfrac{1}{\left(m-3\right)^2}\right]}\)
\(=\dfrac{1}{\left(m-4\right)^2+\left(m-3\right)^2}\)
\(=\dfrac{1}{2m^2-14m+25}=\dfrac{1}{2\left(m-\dfrac{7}{2}\right)^2+\dfrac{1}{2}}\le2\)
=> \(OH\le\sqrt{2}\)
=> Khoảng cách lớn nhất gốc tọa độ đến (d) là \(\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\) (thỏa)
Xét điểm \(A\left(-1;1\right)\). Dễ thấy A thuộc (d). Gọi H là hình chiếu của O trên (d). Ta có \(OH\le OA=\sqrt{2}\). Dấu "=" xảy ra khi và chỉ khi \(H\equiv A\), tức là \(d\perp OA\).
Ta cần tìm m sao cho \(d\perp OA\). Phương trình đường thẳng đi qua O, A là
y = -x. Xét m = 4 thì đường thẳng (d) trở thành \(y=1\), đường thẳng này song song với trục hoành và không vuông góc với d. Xét m khác 4. Khi đó \(\left(m-4\right)x+\left(m-3\right)y=1\Leftrightarrow y=\dfrac{4-m}{m-3}x+\dfrac{1}{m-3}\). Để \(d\perp OA\) thì \(\dfrac{4-m}{m-3}.\left(-1\right)=-1\Leftrightarrow4-m=m-3\Leftrightarrow m=\dfrac{7}{2}\).
Vậy Max \(OH=\sqrt{2}\Leftrightarrow m=\dfrac{7}{2}\).
- Gọi M(x0,y0) ,N(x1,y1) lần lượt là giao điểm của đường thẳng (d): \(y=\left(2m-3\right)x-1\) với trục tung, trục hoành \(\Rightarrow x_0=y_1=0\).
Vì M(0;y0) thuộc (d) nên: \(y_0=\left(2m-3\right).0-1=-1\)
\(\Rightarrow M\left(0;-1\right)\) nên \(OM=1\) (đvđd)
\(N\left(x_1;0\right)\) thuộc (d) nên: \(\left(2m-3\right)x_1-1=0\Rightarrow x_1=\dfrac{1}{2m-3}\)
\(\Rightarrow N\left(\dfrac{1}{2m-3};0\right)\) nên \(ON=\dfrac{1}{2m-3}\) (đvđd)
*Hạ OH vuông góc với (d) tại H \(\Rightarrow OH=\dfrac{1}{\sqrt{5}}\)
Xét △OMN vuông tại O có OH là đường cao.
\(\Rightarrow\dfrac{1}{OM^2}+\dfrac{1}{ON^2}=\dfrac{1}{OH^2}\)
\(\Rightarrow1+\left(2m-3\right)^2=5\)
\(\Rightarrow2m-3=\pm2\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=\dfrac{1}{2}\end{matrix}\right.\) (nhận)