CMR nếu a+b>=0 thì
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^3+b^3\right)>=4\left(a^6+b^6\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
Lời giải:
Nếu $a,b,c$ lập thành csc thì $b=a+m, c=a+2m$ với $m$ là công sai.
Khi đó:
$3(a^2+b^2+c^2)-6(a-b)^2=3[a^2+(a+m)^2+(a+2m)^2]-6(a-a-m)^2$
$=3(a^2+a^2+m^2+2am+a^2+4m^2+4am)-6m^2$
$=3(3a^2+5m^2+6am)=9a^2+15m^2+18am-6m^2$
$=9a^2+9m^2+18am$
$=9(a^2+m^2+2am)=9(a+m)^2=(3a+3m)^2$
$=(a+a+m+a+2m)^2=(a+b+c)^2$ (đpcm).
Lời giải khác:
Áp dụng BĐT AM-GM:
$a^2+(b+c)^2=a^2+\frac{(b+c)^2}{4}+\frac{3(b+c)^2}{4}$
$\geq a(b+c)+\frac{3}{4}(b+c)^2$
$\Rightarrow \frac{a(b+c)}{a^2+(b+c)^2}\leq \frac{4a}{4a+3b+3c}$
Áp dụng BĐT Cauchy_Schwarz:
$\frac{4a}{4a+3b+3c}=\frac{4a}{a+\frac{a+b+c}{3}+...+\frac{a+b+c}{3}}\leq \frac{1}{100}.4a\left(\frac{1}{a}+\frac{3}{a+b+c}+...+\frac{3}{a+b+c}\right)$
$=\frac{1}{25}+\frac{27a}{25(a+b+c)}$
Tương tự với những phân thức còn lại và cộng theo vế:
$\Rightarrow \text{VT}\leq \frac{3}{25}+\frac{27}{25}=\frac{6}{5}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Ta có:
a2(b + c) + b2(a + c) + c2(a + b)
= a2b + a2c + b2a + b2c + c2a + c2b
= (a2b + b2a) + (a2c + c2a) + (b2c + c2b)
= ab(a + b) + ac(a + c) + bc(b + c)
= ab(a + b + c) + ac(a + b + c) + bc(a + b + c) - abc - abc - abc
= (a + b + c)(ab + ac + bc) - 3abc
Do \(a+b+c⋮6\Rightarrow\left(a+b+c\right)\left(ab+ac+bc\right)⋮6\) (1)
Do a + b + c chia hết cho 6 nên trong 3 số này tồn tại ít nhất 1 số chẵn
\(\Rightarrow3abc⋮6\) (2)
Từ (1) và (2) => a2(b + c) + b2(a + c) + c2(a + b) \(⋮6\left(đpcm\right)\)
\(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ca\right)\left(a-abc\right)\)
\(\Leftrightarrow a^2b+ab^2c^2-a^3bc-b^2c=b^2a+a^2bc^2-ca^2-ab^3c\)
\(\Leftrightarrow a^2b-ab^2-b^2c+ca^2=a^2bc^2-ab^3c+a^3bc-ab^2c^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=abc\left(a-b\right)\left(a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)
cảm ơn
nhưng k hiểu mấy