K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

Ta có với a,b là hai số dương và khác nhau thì \(\sqrt{ab}< \frac{a+b}{2}\Leftrightarrow\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\)

Áp dụng điều trên , ta có :

\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+\frac{1}{\sqrt{3.197}}+...+\frac{1}{\sqrt{198.2}}+\frac{1}{\sqrt{199.1}}\)

     \(>2\left(\frac{1}{1+199}+\frac{1}{2+198}+\frac{1}{3+197}+...+\frac{1}{198+2}+\frac{1}{199+1}\right)\)

\(\Rightarrow A>2.\frac{199}{200}=1,99\)

8 tháng 12 2016

Áp dụng BĐT sau : \(\frac{1}{\sqrt{a.b}}>\frac{2}{a+b}\) với \(a\ne b\) (bạn tự chứng minh) , ta được : 

\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+\frac{1}{\sqrt{3.197}}+...+\frac{1}{\sqrt{199.1}}\)

\(>2.\left(\frac{1}{1+199}+\frac{1}{2+198}+\frac{1}{3+197}+...+\frac{1}{199+1}\right)\)

\(=2.\frac{199}{200}=1,99\)

Vậy A > 1,99

7 tháng 12 2016

mi tích tau tau tích mi xong tau trả lời nka

việt nam nói là làm

29 tháng 7 2016

help me :<<

29 tháng 7 2016

\(VT=2.\left(\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+...+\frac{1}{\sqrt{99.101}}+\frac{1}{\sqrt{100.100}}\right)\)

\(=2\left(\frac{1}{\sqrt{1.199}}+...+\frac{1}{\sqrt{n\left(200-n\right)}}+...+\frac{1}{\sqrt{99.101}}+\frac{1}{100}\right)\)\(\left(1\le n\le99\right)\)

Ta chứng minh \(\sqrt{n\left(200-n\right)}\le100\text{ }\left(\text{*}\right)\)

\(\left(\text{*}\right)\Leftrightarrow200n-n^2\le100^2\Leftrightarrow n^2-2.100n+100^2\ge0\)

\(\Leftrightarrow\left(100-n\right)^2\ge0\)

Do bất đẳng thức cuối đúng nên (*) là đúng, do đó ta có: 

\(A\ge2\left(\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\right)\text{ }\left(\text{100 số }\frac{1}{100}\right)\)

\(=2>1,99\)

29 tháng 10 2016

Áp dụng bđt \(\frac{1}{\sqrt{ab}}>\frac{2}{a+b}\) với a > 0; b > 0; a \(\ne\) b ta có:

\(A=\frac{1}{\sqrt{1.199}}+\frac{1}{\sqrt{2.198}}+...+\frac{1}{\sqrt{199.1}}>\frac{2}{1+199}+\frac{2}{2+198}+...+\frac{2}{199+1}\)

\(A>\frac{2}{200}+\frac{2}{200}+...+\frac{2}{200}\) (199 số \(\frac{2}{200}\))

\(A>\frac{2}{200}.199\)

\(A>\frac{1}{100}.199=1,99>1\)

=> A > 1

29 tháng 5 2017

CMR S>1.99 nhé

30 tháng 5 2017

...,,,,,

19 tháng 7 2021

undefined

Đây nha

12 tháng 10 2020

a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)

áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)

(so sánh bình phương 2 số sẽ ra nha)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

áp dụng công thức cho biểu thức A ta CM được

A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)

=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)

từ (1) và (2) => ĐPCM

b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)

và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)

từ (1) và (2)=>ĐPCM

(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)

MỜI BẠN THAM KHẢO

15 tháng 2 2020

Với a,b,c \(\ge\) 0, ta có:

\(BĐT\Leftrightarrow\frac{2}{a}+\frac{2}{b}+\frac{2}{c}-\frac{2}{\sqrt{ab}}-\frac{2}{\sqrt{bc}}-\frac{2}{\sqrt{ca}}\ge0\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{c}}\right)^2+\left(\frac{1}{\sqrt{c}}-\frac{1}{\sqrt{a}}\right)^2\ge0\)(đúng)