chứng minh các đẳng thức sau:
a) 128.912=1816
B)7520=4510.530
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7520 = 4510.530
Ta có: 4510.530 = (9.5)10.530 = 910.510.530 = (32)10.540
=320.(52)20 = 320.2520 = (3.25)20 = 7520
Vế phải bằng vế trái nên đẳng thức được chứng minh
Bài 8:
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Rightarrow2^{225}< 3^{150}\)
b) \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
128.912 = 1816
Ta có: 128.912 = (4.3)8.912 =48.38.912 =(22)8.(32)4.912
= 216.94.912 = 216.916= (2.9)16 = 1816
Vế trái bằng vế phải nên đẳng thức được chứng minh
a: (sina+cosa)^2
=sin^2a+cos^2a+2*sina*cosa
=1+sin2a
b: \(cos^4a-sin^4a=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)\)
\(=cos^2a-sin^2a=cos2a\)
a) Ta có:
\(VT=\left(a-b\right)^2\)
\(=a^2-2\cdot a\cdot b+b^2\)
\(=a^2-2ab+b^2\)
\(=a^2-4ab+2ab+b^2\)
\(=\left(a^2+2ab+b^2\right)-4ab\)
\(=\left(a+b\right)^2-4ab=VP\)
⇒ Đpcm
b) Ta có:
\(VT=\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2\cdot x\cdot y+y^2+x^2-2\cdot x\cdot y+y^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
\(=2x^2+0+2y^2\)
\(=2x^2+2y^2\)
\(=2\left(x^2+y^2\right)=VP\)
⇒ Đpcm
a: (a-b)^2
=a^2-2ab+b^2
=a^2+2ab+b^2-4ab
=(a+b)^2-4ab
b: (x+y)^2+(x-y)^2
=x^2+2xy+y^2+x^2-2xy+y^2
=2x^2+2y^2
=2(x^2+y^2)
a: Ta có: \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}-\dfrac{4\sqrt{6}}{2}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-3}{2}\)
a, \(\dfrac{a^2+2ab+b^2}{4}\ge ab\)
\(\Leftrightarrow\)a^2+2ab+b^2>=4ab
\(\Leftrightarrow\)a^2-2ab+b^2>=0
\(\Leftrightarrow\)(a-b)^2>=0 (luôn đúng)
b,\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) luôn đúng
a) Ta có:
\(\begin{array}{l}{\sin ^4}\alpha - {\cos ^4}\alpha = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha - {\cos ^2}\alpha - 1 + 2{\cos ^2}\alpha = 0\\ \Leftrightarrow {\sin ^2}\alpha + {\cos ^2}\alpha - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)
Đẳng thức luôn đúng
b) Ta có:
\(\begin{array}{l}\tan \alpha + \cot \alpha = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)
Đẳng thức luôn đúng
\(a,VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2=a^2c^2+b^2c^2+a^2d^2+b^2d^2\)
\(\Rightarrow VT=a^2c^2+b^2c^2+a^2d^2+b^2d^2=VP\left(đpcm\right)\)
b, Tham khảo:Chứng minh hằng đẳng thức:(a+b+c)3= a3 + b3 + c3 + 3(a+b)(b+c)(c+a) - Hoc24
a) Ta có: \({\left( {\sin \alpha + \cos \alpha } \right)^2} = {\sin ^2}\alpha + 2\sin \alpha \cos \alpha + {\cos ^2}\alpha = 1 + \sin 2\alpha \;\)
b) \({\cos ^4}\alpha - {\sin ^4}\alpha = \left( {{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) = \cos 2\alpha \;\)
Câu a : 128.912=1816
Giải: Phân thích vế trái : 128.912=(22.3)8.912=216.38.912=216.(32)4.912=
=216.(94.912)=216.916=816
Vậy : 128.912=816
Câu b : 7520=4510.530
Giải: Phân tích cả 2 vế :
+ Vế trái : 7520=(3.25)20=320.2520=320.(52)20=320.540 (1)
+ Vế trái : 4510.530=(9.5)10.530=910.510.530=(32)10.(510.530)=320.540 (2)
Từ (1) và (2) => 7520=4510.530
Chúc bạn học tốt !
HAY