Một con lắc lò xo treo thẳng đứng dao động điều hòa với chu kỳ T. Biết độ lớn lớn nhất của lực đàn hồi là 9N; khi vật ở VTCB, lực đàn hồi có độ lớn 3N. Khaorng thời gian ngắn nhất để độ lớn của lực đàn hồi biến thiên từ vị trí nhỏ nhất đến trị số lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Thế năng đàn hồi:
Cách giải:
Độ dãn của lò xo tại vị trí cân bằng: Δ l 0 = m g k = 0,2.10 80 = 0,025 m = 2,5 c m
Biên độ dao động của con lắc: A = 7 , 5 - Δ l 0 = 7 , 5 - 2 , 5 = 5 c m
Ta có: Δ l 0 < A
Chọn chiều dương hướng xuống
⇒ Vị trí lực đàn hồi có độ lớn nhỏ nhất là vị trí lò xo không giãn cũng không nén: Δ l = 0
Thế năng đàn hồi tại vị trí đó: W t = 1 2 k Δ l 2 = 1 2 80. ( 0 ) 2 = 0 J
Đáp án D
Phương pháp: Thế năng đàn hồi : Thế năng đàn hồi :
Cách giải:
Độ dãn của lò xo tại vị trí cân bằng:
Biên độ dao động của con lắc: A = 7,5 - Δl0 = 7,5 - 2,5 = 5cm
Ta có: Δl0< A
Chọn chiều dương hướng xuống
=> Vị trí lực đàn hồi có độ lớn nhỏ nhất là vị trí lò xo hông giãn cũng hông nén: Δl = 0
Thế năng đàn hồi tại vị trí đó:
Thời gian lò xo giãn trong một chu kì được biểu diễn trên đường tròn lượng giác:
Đáp án D
Đáp án D
+ Thời gian lò xo giãn trong một chu kì được biểu diễn trên đường tròn lượng giác
Chu kì dao động: T = 2π/ω = 2π/5π = 0,4s
Thời điểm t = 0 và thời điểm độ lớn lực đàn hồi bằng 0,5N được biểu diễn trên đường tròn lượng giác:
Một chu kì có 4 lần độ lớn lực đàn hồi bằng 0,5N
Sau 504T độ lớn lực đàn hồi bằng 0,5N lần thứ 2016
=> Lực đàn hồi có độ lớn bằng 0,5N lần thứ 2018 vào thời điểm:
Đáp án C
Đáp án C
Chu kì dao động: T = 2π/ω = 2π/5π = 0,4s
Thời điểm t = 0 và thời điểm độ lớn lực đàn hồi bằng 0,5N được biểu diễn trên đường tròn lượng giác:
Một chu kì có 4 lần độ lớn lực đàn hồi bằng 0,5N
Sau 504T độ lớn lực đàn hồi bằng 0,5N lần thứ 2016
=> Lực đàn hồi có độ lớn bằng 0,5N lần thứ 2018 vào thời điểm:
Lực đàn hồi cực đại: \(F_{dhmax}=k(\Delta\ell_0+A)=9\) (1)
Lực đàn hồi ở VTCB là: \(F_{dhcb}=k.\Delta\ell_0=3\) (2)
Lấy (1) trừ (2) vế với vế ta được: \(k.A=6\) (3)
Lấy (2) chia (3) vế với vế ta được: \(\dfrac{\Delta\ell_0}{A}=\dfrac{1}{2}\)
Lực đàn hồi cực tiểu khi \(x=-\Delta\ell_0\)
Lực đàn hồi cực đại khi \(x=A\)
Biểu diễn dao động bằng véc tơ quay:
Thời gian tương ứng với véc tơ quay từ M đến N, góc quay: 1200
Thời gian: \(t=\dfrac{120}{360}T=\dfrac{T}{3}\)