K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

A B H D C K

3 tháng 9 2016

Tam giác ABC vuông tại A ﴾gt﴿

=> góc BAD + DAC = 90\(^0\)﴾1﴿

Tam giác HAD vuông tại H có:

góc HDA + HAD = 90\(^0\) ﴾2﴿

Mà góc HAD = góc DAC ﴾ vì AD là p/g của HAC ﴿ ﴾3﴿

Từ ﴾1﴿ ﴾2﴿ và ﴾3﴿ => góc BAD = góc BDA => tam giác ABD cân tại B

=> AB=BD﴾ t/c tam giác cân ﴿

Tam giác ABC có AH là đường cao :

AB 2 = BH * BC ﴾ Hệ thức lượng﴿

<=> AB 2 = ﴾ BD‐6﴿ * BC

<=> AB 2 = ﴾AB‐6﴿ * 25

<=> AB 2 ‐25AB + 150 = 0

<=> ﴾ AB‐10﴿ * ﴾AB‐15﴿=0

<=> AB=10 hoặc AB=15

14 tháng 9 2017

[​IMG]
c/m  
=> KD=DH=6 cm
đặt CD =x (x>0)
áp dụng đlý ta lét
 
 
\Rightarrow 

lại có  
\Rightarrow  
\Rightarrow  
\Rightarrow  
Nếu x=15 => AB=10<2DK=12=>loai
nẽu=10=>AB=15 thoa man

Vậy AB=15

14 tháng 9 2017

 ta có tam giác AHB ~ tam giác CAB. => AH/AC = HB/AB. Lại có AH/AC = DH/DC 
=> DH/DC = HB/AB <=> DH/(DH + DC) = HB/(HB + AB). <=> DH/(BC - HB) = HB/(HB + AB). (1) 
Dễ dàng thấy DH=DK=6. Thay vào (1) ta có 6/(25 - HB) = HB/(HB + AB) (2) 
Lại có tam giác AHC ~ tam giác BAC => AH/AC = BA/BC. <=> DH/DC = BA/BC <=> DH/HC = AB/(BC + AB). => 6/(25 - HB) = AB/(25 + AB). (3). 
Bạn giải ptr (2) và (3) để tìm ra AB. K khó lắm đâu. Cố gắng nốt nha! 

29 tháng 8 2015

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

bn ơi bấm đúng cho mk nhé           

3 tháng 7 2015

Tam giác ABC vuông tại A (gt) 

=> góc BAD + DAC = 90 (1)

Tam giác HAD vuông tại H có : 

góc HDA + HAD = 90(2)

Mà góc HAD = góc DAC ( vì AD là p/g của HAC ) (3)

Từ (1) (2) và (3) => góc BAD = góc BDA => tam giác ABD cân tại B

=> AB=BD( t/c tam giác cân ) 

Tam giác ABC có AH là đường cao : 

AB2 = BH * BC ( Hệ thức lượng) 

<=> AB2 = ( BD-6) * BC

<=> AB2 = (AB-6) * 25

<=> AB2 -25AB + 150 = 0

<=> ( AB-10) * (AB-15)=0 

<=> AB=10 hoặc AB=15

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))

Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)

c) Ta có: ΔADH vuông tại H(gt)

nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)

nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)

Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)

Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)

nên ΔBAD cân tại B(Định lí đảo của tam giác cân)

4 tháng 5 2022

db

 

 

10 tháng 6 2018

AD là phân giác của góc HAC

\(\rightarrow\widehat{HAD}=\widehat{DAK}\)

Xét 2 tam giác vuông HAD và KAD có:

AD chung

\(\widehat{HAD}=\widehat{DAK}\) (cmt)

\(\Rightarrow\Delta HAD=\Delta KAD\left(ch-gn\right)\)

\(\rightarrow HD=DK=6cm\) (2 cạnh tương ứng)

\(\widehat{ADH}+\widehat{HAD}=90^o\) ; \(\widehat{BAD}+\widehat{DAK}=90^o\)

\(\widehat{HAD}=\widehat{DAK}\) \(\rightarrow\widehat{ADH}=\widehat{BAD}\Rightarrow\Delta BAD\) cân tại B

\(\rightarrow BA=BD\)

Đặt BA = BD = x (cm)

Áp dụng hệ thức lượng trong tam giác vuông ABC tại A

\(\Rightarrow AB^2=BH.HC\)

hay \(x^2=\left(x-6\right).25\)

\(\leftrightarrow x^2-25x+150=0\leftrightarrow\left(x-10\right)\left(x-15\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=15\end{matrix}\right.\)

Vậy AB = 10cm hoặc AB = 15cm.
Chúc bạn học tốt!

10 tháng 6 2018

A B C H D K