CMR: Với mọi số tự nhiên n thì 7n và 7n+4 có 2 chữ số tận cùng như nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC ( 7n + 10 ; 5n + 7 )
=> 7n + 10 ⋮ d => 5.( 7n + 10 ) ⋮ d => 35n + 50 ⋮ d
=> 5n + 7 ⋮ d => 7.( 5n + 7 ) ⋮ d => 35n + 49 ⋮ d
=> [ ( 35n + 50 ) - ( 35n + 49 ) ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯC ( 7n + 10 ; 5n + 7 ) = 1 nên 7n + 10 và 5n + 7 là nguyên tố cùng nhau
Câu b làm tương tự
Giải :
Gọi d là ƯCLN của 7n+10 và 5n+7
=> 7n + 10 chia hết cho d ; 5n + 7 chia hết cho d
=> 35n + 50 chia hết cho d ;35n + 49 chia hết cho d
=> ( 35n + 50 - 35n + 49 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1
~ HT ~
Gọi m là ƯCLN(7n + 10, 5n + 7)
=>\(\hept{\begin{cases}7n+10⋮m\\5n+7⋮m\end{cases}}\)
=>\(\hept{\begin{cases}5\left(7n+10\right)⋮m\\7\left(5n+7\right)⋮m\end{cases}}\)
=> \(\hept{\begin{cases}35n+50⋮d\\35+49⋮d\end{cases}}\)
=> (35n + 50) - (35n + 49) \(⋮\)d
=> 1 chia hết cho d
=> d = 1
K/l: Vậy 7n + 10 và 5n + 7 là số nguyên tố cùng nhau
Saii srr bn
Bài 1:Tính cả ước âm thì là số `12`
Bài 2:
Gọi `ƯCLN(7n+10,5n+7)=d(d>0)(d in N)`
`=>7n+10 vdots d,5n+7 vdots d`
`=>35n+50 vdots d,35n+49 vdots d`
`=>1 vdots d`
`=>d=1`
`=>` 7n+10 và 5n+7 là 2 số nguyên tố cùng nhau.
Các phần còn lại thì bạn làm tương tự câu a.
Đặt d = ( n + 1; 7n + 4 )
Ta có: \(\hept{\begin{cases}7n+4⋮d\\n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮d\\7n+7=7\left(n+1\right)⋮d\end{cases}}\Rightarrow\left(7n+7\right)-\left(7n+4\right)⋮d\)
=> \(3⋮d\Rightarrow d\in\left\{1;3\right\}\)=> d có thể bằng 3 hoặc bằng 1
Với d = 3 ta có: \(\hept{\begin{cases}7n+4⋮3\\n+1⋮3\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮3\\6n+6=6\left(n+1\right)⋮3\end{cases}}\Rightarrow\left(7n+4\right)-\left(6n+6\right)⋮3\)
=> \(n-2⋮3\)
=> Tồn tại số tự nhiên k sao cho : n - 2 = 3k => n = 3k + 2
=> n khác 3k + 2 thì d khác 3
hay n khác 3k + 2 thì d = 1
=> n khác 3k + 2 thì n + 1 và 7n + 4 là hai số nguyên tố cùng nhau.
b)Gọi UCLN(2n+3;4n+8) là d
Ta có:2n+3 chia hết cho d
4n+8 chia hết cho d
=>2(2n+3) chia hết cho d
1(4n+8)chia hết cho d
=>4n+6 chia hết cho d
4n+8 chia hết cho d
4n+8 -(4n+6) chia hết cho d
2 chia hết cho d
=>d thuộc {1;2} mà 2n+3 không chia hết cho 2
=>d=1
Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau.
Tick câu thứ 2 nha!Nếu không hiểu bạn nhắn tin hỏi mình nhé!
gọi chữ số tận cùng của 7n là:a
ta có:7n+4=7n.74=(...a).2401=...a
=>đpcm
Gọi d là ƯCLN của 7n + 10 và 5n + 7.
Khi đó ta có 7n + 10 chia hết d và 5n + 5 chia hết d. Vậy thì 5( 7n +10) - 7( 5n+7) = 1 chia hết d. Vậy d = 1 hay 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau.
giả sử (7n+10, 5n+7)=d
suy ra 7n+10chia hết d, 5n+7 chia hết d
suy ra 35n+50 chia hết d; 35n+7 chia hết d
suy ra 35n+50 - 35n-7 chia hết d
suy ra 1 chia hết d
suy ra d=1
vậy UWCCLN (7n+10; 5n+7)=1
suy ra 7n+10;5n+7 là SNT cùng nhau
a, Xét : 6n-n = 5n
Vì n chẵn nên 5n có tận cùng là 0
=> n và 6n có chữ số tận cùng giống nhau
c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)
Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10
=> n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng như nhau
Tk mk nha
gọi chữ số tận cùng của 7\(^n\) là:a
Ta có:7\(^{n+4}\)=7\(n\) .7\(^4\)=﴾...a﴿.2401=...a (đpcm)
2 chữ số tận cùng mà bn