Cho hình thang ABCD, có góc A = góc D = 90 độ và CD=2AB=2AD. Lấy điểm M thuộc đáy nhỏ AB kẻ Mx vuông góc DM cắt BC tại N. Tính số đo góc ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Goi I là trung điểm của CD
=> I D = AD / 2
=> 2ID = AD
=> 2ID = 2 AB = 2 AD
=> ID = AB = AD
Xét tứ giác ABID có ID = AB = AD
=> ABID là hình thoi
Xét hình thoi ABID có
góc A = góc D = 90 độ
=> ABID là hình vuông
=> AD = B I
=> 2BI = 2AD
=> 2BI = DC
=> BI = DC / 2
=> BI = IC
Vì ABID là hình vuông => BID = 90 độ
=> 180 - BID = 90 độ
=> BIC = 90 độ => tam giác BIC vuông tại I
Xét tam giác vuông BIC co BI = I C
=> tam giác BIC vuông cân tại I
=> I B C = 45 độ
Vì ABI = 90 độ
=> ABI + IBC = 135
=> ABC = 135 độ
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Cm được AIM =1350 ( lấy I Trên AB sao cho BI = BM) suy ra AI =CM , góc CMN =góc IAM ( cùng phụ AMB) vậy tam giác AIM =tam giác MCN ( c -g c)
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Gọi E là trung điểm AD
→ AE = ED = 1212 AD
Mà BC = 1212 AD (gt)
⇒ AE = BC (= 1212 AD)
Có: ABCD là hình thang(gt)
⇒ AD // BC (đn)
hay AE // BC (E ∈ AD- cv)
Xét tứ giác AECB có:
AE // CB (cmt)
AE = CB (cmt)
⇒ AECB là hình bình hành (DHNB)
Xét hình bình hành ABCE có:
ˆAA^ = ˆBB^ = 90o90o
AB = BC
⇒ ABCE là hình vuông
⇒ CE ⊥ AE tại E (đn)
hay CE ⊥ AD tại E
Xét ΔACD có:
CE là đường trung tuyến (cv)
CE là đường cao (CE ⊥ AD tại E - cmt)
⇒ ΔACD cân tại C (t/c)
mà ˆACEACE^ = 45o45o
⇒ ˆACDACD^ = 90o90o
⇒ ΔACD vuông cân tại C (đn)
Gọi I là giao điểm của AC và MN
Xét ΔAIM và ΔNIC có:
ˆAIMAIM^= ˆNICNIC^ (2 góc đối đỉnh)
ˆIMAIMA^ = ˆICNICN^
⇒ ΔAIM ᔕ ΔNIC (g.g)
⇒ AINIAINI = IMICIMIC (cặp cạnh t/u)
⇒ AIIMAIIM = NIICNIIC
Xét ΔAIN và ΔMIC có:
AIIMAIIM = NIICNIIC
ˆAINAIN^ = ˆMICMIC^(2 góc đối đỉnh)
⇒ ΔAIN ᔕ ΔMIC (c.g.c)
⇒ ˆANIANI^ = ˆICMICM^ = ˆACBACB^ = 45o45o (Vì ΔABC vuông cân tại B)
→ ˆANMANM^ = 45o45o
Lại có: ˆAMNAMN^ = 90o90o (AM ⊥ MN tại M)
⇒ ΔAMN vuông cân tại M (đpcm)