I x - \(\frac{2}{3}\) I + I 2y + 3 I + ( Z - 2 )2 =
ây za giúp mk với nha mai mk nộp rùi, thanks mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để tui lm cho
áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
<=> \(1-3xyz=1\left(1-xy-yz-zx\right)\)
<=> \(3xyz=xy+yz+zx\)
mặt khác ta có 1=(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx
<=> 1=1+2(xy+yz+zx)
<=> xy+yz+zx=0
<=> 3xyz=0
<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
đến đấy cậu tự lm nốt nhé
mà pn tuấn anh j ơi ,, bài này mk tìm đc 3 cặp nghiệm luôn á (x;y;z)=(0;0;1);(0;1;0);(1;0;0)
pn giải cụ thể ra giúp mk vs
\(\frac{\left(x+1\right)3}{111\cdot3}=\frac{3x+3}{333}\)
\(\frac{\left(y+2\right)2}{222\cdot2}=\frac{2y+4}{444}\)
Ta có: \(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x+3}{333}=\frac{2y+4}{444}=\frac{z+3}{333}=\frac{3x+3+2y+4+z+3}{333+444+333}=\frac{\left(3x+2y+z\right)+\left(3+4+3\right)}{1110}=\frac{989+10}{1110}=\frac{999}{1110}=\frac{9}{10}\)
\(\frac{3x+3}{333}=\frac{9}{10}\Rightarrow3x+3=\frac{2997}{10}\Rightarrow3x=\frac{2967}{10}\Rightarrow x=\frac{989}{10}=98,9\)
Tìm y và z tương tự nhé! Ko hiểu chỗ nào thì nói tớ!
1.A= 1.2.3+2.3.4+...+29.30.31+x=15
\(4A=1.2.3.4+2.3.4.\left(5-1\right)+...+29.30.31.\left(32-28\right)+4x=60\)
\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+29.30.31.32-28.29.30.31+4x=60\)
Từ đó suy ra nha bạn
2.\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=\frac{2}{2\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)
\(=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\\ =1-\frac{2}{\left(x+1\right)}=\frac{2007}{2009}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2009}\Rightarrow x+1=2009\Rightarrow x=2008\)
Đùa game, đánh xong rồi ấn nhầm nút hủy :) ok im fine
Bài 1: Câu hỏi của nguyễn hà - Toán lớp 8 | Học trực tuyến
Bài 2:
a) \(B=\frac{3y^3-7y^2+5y-1}{2y^3-y^2-4y+3}\)
\(B=\frac{3y\left(y^2-2y+1\right)-\left(y^2-2y+1\right)}{2y\left(y^2-2y+1\right)+3\left(y^2-2y+1\right)}\)
\(B=\frac{\left(y-1\right)^2\left(3y-1\right)}{\left(y-1\right)^2\left(2y+3\right)}=\frac{3y-1}{2y+3}\)
b) \(\frac{2D}{2y+3}=\frac{2\left(3y-1\right)}{\left(2y+3\right)^2}\Leftrightarrow6y-2⋮\left(2y+3\right)^2\)
Dễ thấy tử số là số chẵn, mẫu số là số lẻ nên \(\frac{2D}{2y+3}\)không là số nguyên
Mặt khác vì mọi số nguyên đều chia hết cho 1 và -1
\(\Rightarrow\left[{}\begin{matrix}2y+3=1\\2y+3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\)
c) \(B>1\Leftrightarrow\frac{3y-1}{2y+3}>1\)
\(\Leftrightarrow3y-1>2y+3\)
\(\Leftrightarrow y>4\)
Vậy....
Ta có:\(\frac{x+y}{2}=\frac{y-5}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)
\(\Rightarrow\frac{x+2y-5}{5}=\frac{x+2y-5}{y-1}\)\(\Rightarrow y-1=5\Rightarrow y=6\)
\(\Rightarrow\frac{x+6}{2}=\frac{6-5}{3}\)\(\Rightarrow\frac{x+6}{2}=\frac{1}{3}\)
\(\Rightarrow3\cdot\left(x+6\right)=2\)
\(\Rightarrow3x+18=2\)
\(\Rightarrow3x=-16\Rightarrow x=\frac{-16}{3}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{5}\)
\(=\frac{x+2y-5}{y-1}\) (theo đề bài)
=> y - 1 = 5
=> y = 5 + 1 = 6
Thay y = 6 vào đề bài ta có: \(\frac{x+6}{2}=\frac{7-6}{3}=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}.2-6=\frac{-16}{3}\)
Vậy \(x=\frac{-16}{3};y=6\)
Vì \(\left|x-\frac{2}{3}\right|\ge0\); \(\left|2y+3\right|\ge0\); \(\left(z-2\right)^2\ge0\)
=> \(\left|x-\frac{2}{3}\right|+\left|2y+3\right|+\left(z-2\right)^2\ge0\)
Mà theo đề bài: \(\left|x-\frac{2}{3}\right|+\left|2y+3\right|+\left(z-2\right)^2=0\)
=> \(\begin{cases}\left|x-\frac{2}{3}\right|=0\\\left|2y+3\right|=0\\\left(z-2\right)^2=0\end{cases}\)=> \(\begin{cases}x-\frac{2}{3}=0\\2y+3=0\\z-2=0\end{cases}\)=> \(\begin{cases}x=\frac{2}{3}\\2y=-3\\z=2\end{cases}\)=> \(\begin{cases}x=\frac{2}{3}\\y=-\frac{3}{2}\\z=2\end{cases}\)
Vậy \(x=\frac{2}{3};y=-\frac{3}{2};z=2\)
= 0 nha mn mk ghi thiếu