Giúp mk vs nha!!!!!!!
Chứng minh rằng nếu 2 đường thẳng song song thì 2 tia phân giác của cặp góc trong cùng phía vuông góc với nhau.(vẽ hình, chứng minh giúp mk nha).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mù ak, ghi dấu rùi ây! ko tl dc thì ra chỗ khác đỡ tốn chỗ giải toán
Vì hai đường song song thì có hai góc cùng phía bù nhau
=> Tổng hai góc cùng phía = 1800
=> Tổng hai góc phân giác của hai góc cùng phía = 900
=> Hai tia phân giác của hai góc trong cùng phía là góc vuông (ĐPCM)
Giả thiết: Hai đường thẳng song song
Kết luận: Các tia phân giác của mỗi cặp góc đồng vị song song với nhau
Cho hình vẽ như trên.
Ta có:
a//b => góc CAB + góc ABD = 1800 (trong cùng phía)
Mà Â1= Â2, góc B1 góc B2
Nên 2.Â2 + 2. góc B2 = 1800
=> Â2 + góc B1 = 900
Tam giác AOB có:
Â2 + góc B1 + AÔB =1800
Hay AÔb = 1800 - (Â2 + góc B1) = 1800 - 900 = 900
=>OA vuông góc với OB (ĐPCM)
ta có: a//b => \(\widehat{A}+\widehat{B}=180^o\)
\(\widehat{A}_1+\widehat{B}_1=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}=\frac{\widehat{A}+\widehat{B}}{2}=\frac{180^o}{2}=90^o\)
\(\widehat{O}=180^o-\left(\widehat{A_1}+\widehat{B_1}\right)=180^o-90^o=90^o\)
=> AO_|_BO tại O
giải:
giả sử đường thẳng d căt 2 đường thẳng song song tại A, B, đường phân giác góc A và B cắt nhau tại M
2 góc trong cùng phía có tổng = 180 độ
=> (MBA + MAB) = 180/2 = 90 độ
=> BMA = 180 - MAB - MBA = 180 - 90 = 90 độ
hay AM vuông góc với BM
Giả sử đường thẳng AB // CD cắt đường thẳng EF tại E và F
Ta có: ∠BEF + ∠EFD = 180o (hai góc trong cùng phía)
+) Do EK là tia phân giác của góc ∠ BEF nên:
∠E1 = 1/2 .∠ (BEF) (1)
+) Do FK là tia phân giác của góc EFD nên :
∠F1 = 1/2 .∠EFD (2)
Từ (1) và (2) suy ra:
∠E1 +∠F1 =1/2 .(∠BEF + ∠EFD ) = 1/2 . 180º = 90º ( ∠BEF + ∠EFD = 180º hai góc trong cùng phía)
Trong ΔEKF,ta có:
∠EKF = 180o-(∠E1 + ∠F1) = 180o-90o=90o
Vậy EK ⊥FK
Giải
Giả sử đường thẳng AB // CD cắt đường thẳng EF tại E và F
Ta có: (widehat {BEF} + widehat {EFD} = 180^circ ) (hai góc trong cùng phía)
(eqalign{
& widehat {{E_1}} = {1 over 2}widehat {{ m{BEF}}}left( {gt} ight) cr
& widehat {{F_1}} = {1 over 2}widehat {EFD}left( {gt} ight) cr} )
( Rightarrow widehat {{E_1}} + widehat {{F_1}} = {1 over 2}left( {widehat {{ m{BEF}}} + widehat {EFD}} ight) = 90^circ )
Trong ∆EKF, ta có:
(widehat {EKF} = 180^circ – left( {widehat {{E_1} + widehat {{F_1}}}} ight) = 180^circ – 90^circ = 90^circ )
Vậy (EK ot FK).
Hai đường thẳng song song nhau và có một đường thẳng cắt hai đường thẳng đó sẽ tạo ra ít nhất 1 cặp góc so le trong bằng nhau.
Ta có: Hai tia phân giác của 2 góc so le trong đó.
=> Hai góc tạo thành bởi hai tia phân giác bằng nhau.
=> Hai góc đó là hai góc đồng vị bằng nhau.
=> ĐPCM
góc AOy + góc OAy' = 180 độ (xy//x'y') (1)
góc AOB = góc AOy : 2 (OB là tia phân giác của góc AOy) (2)
góc OAB = góc OAy' : 2 (AB là tia phân giác của góc OAy') (3)
Từ (1); (2); (3) => góc AOB + góc OAB = (góc AOy + góc OAy') : 2 = 180 độ : 2 = 90 độ
=> tam giác OAB vuông tại B (DHNB)
=> OB vuông góc với AB (t/c)
a // b
c x a = A
c x b = B
\(\begin{cases}\widehat{A_1}=\widehat{A_2}=\frac{1}{2}.\widehat{A}\\\widehat{B_1}=\widehat{B_2}=\frac{1}{2}.\widehat{B}\end{cases}\)
Mặt khác
\(\widehat{A}+\widehat{B}=180^0\)
=> \(\widehat{A_1}+\widehat{B_1}=\frac{\widehat{A}}{2}+\frac{\widehat{B}}{2}\)
=> \(\widehat{A_1}+\widehat{B_1}=\frac{\widehat{A}+\widehat{B}}{2}\)
=> \(\widehat{A_1}+\widehat{B_1}=\frac{180^0}{2}=90^0\)
Xét \(\Delta ABC\) có :
\(\widehat{A_1}+\widehat{B_1}+\widehat{C}=180^0\)
=> \(90^0+\widehat{C}=180^0\)
=> \(\widehat{C}=90^0\) ( đpcm )