K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

sao nhiều v bạn

b) Ta có: AD+DC=AC(D nằm giữa A và C)

nên DC=AC-AD=3-1=2(cm)

Ta có: DE=AD(gt)

mà AD=1cm(cmt)

nên DE=1cm

Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)

\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)

Xét ΔBDE và ΔCDB có 

\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)

\(\widehat{BDE}\) chung

Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)

a) Ta có: AD+DE+EC=AC

mà AD=DE=EC(gt)

nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=1+1=2\)

hay \(BD=\sqrt{2}cm\)

Vậy: \(BD=\sqrt{2}cm\)

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

21 tháng 7 2023

Giải thích các bước giải:

a, ΔBAD có BA = BD

⇒ ΔBAD cân ở B

⇒ ���^=���^ (đpcm)

b, Ta có:

ΔAHD vuông ở H ⇒ ���^+���^=90�

ΔABC vuông ở A ⇒ ���^=���^=90�

m���^=���^

⇒ ���^=���^

⇒ AD là tia phân giác của ���^ (đpcm)

c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:

AH chung; ���^=���^

⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)

⇒ AH = AK (đpcm)

d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH

Vậy AB + AC < BC + AH

24 tháng 3 2019

BD<AC vì B>C (các góc đối diện của tam giác nhé)

Hok tốt