Rút gọn biểu thức :
\(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}.\sqrt{2+\sqrt{3}}\)
\(\left[\left(a-b\right)\sqrt{\frac{a+b}{a-b}}+a-b\right]\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\)với a>b>0
Chứng minh rằng :
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
Bài 1:
a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)
\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)
Bài 2:
\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)