Chứng minh rằng: 12^8.9^12=18^16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(12^8.9^{12}=\left(2^2.3\right)^8.\left(3^2\right)^{12}=2^{16}.3^8.3^{24}=2^{16}.3^{32}=2^{16}.\left(3^2\right)^{16}=2^{16}.9^{16}=18^{16}\)
\(12^8.9^{12}=4^8.3^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\left(đpcm\right)\)
\(12^8.9^{12}=(3.2^2)^8.(3^2)^{12}\)
\(=3^8.2^{16}.3^{24}=2^{16}.3^{8+24}=2^{16}.3^{32}\)
\(=2^{16}.9^{16}=(2.9)^{16}=18^{16}\)
a) Ta có : \(45^{10}=5^{10}.3^{20}\)
\(\Rightarrow45^{10}.5^{30}=3^{20}.5^{10}.5^{30}=3^{20}.5^{40}=3^{20}.\left(5^2\right)^{20}=3^{20}.25^{20}=\left(3.25\right)^{20}=75^{20}\)
Vậy \(45^{10}.5^{30}=75^{20}\)
b) Ta có : \(12^8=3^8.2^{16}\)và \(9^{12}=3^{24}\)
\(\Rightarrow12^8.9^{12}=3^8.2^{16}.3^{24}=2^{16}.\left(3^2\right)^{16}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\)
Vậy \(12^8.9^{12}=18^{16}\)
a) \(12^8.9^{12}=18^{16}\)
ta cóvế trái : \(12^8.9^{12}=\left(2^2.3\right)^8.\left(3^2\right)^{12}=2^{16}.3^8.3^{24}=2^{16}.3^{32}\)
vế phải :\(18^{16}=\left(2.3^2\right)^{16}=2^{16}.3^{32}\)
=> VT =VP
b) \(75^{20}=45^{10}.5^{30}\)
VT=\(75^{20}=\left(3.5^2\right)^{20}=3^{20}.5^{40}\)
VP = \(45^{10}.5^{30}=\left(2^2.5\right)^{10}.5^{30}=2^{20}.5^{30}\)
ta tháy VT=VP
=> ĐPCM
b)
Ta có:
\(75^{20}=45^{10}.5^{30}\\ hay\left(5^2.3\right)^{20}=\left(5.3^2\right)^{10}.5^{30}\\ 5^{40}.3^{20}=5^{10}.3^{20}.5^{30}\\ 5^{40}.3^{20}=5^{40}.3^{20}\)
Vậy \(75^{20}=45^{10}.5^{30}\left(ĐPCM\right)\)
Câu a hình như sai đề, không làm được
128.912=(22.3)8.(32)12=216.38.324=216.332=216.(32)16=216.916=(2.9)16=1816
=>128.912=1816