Rút gọn 7-4căn3 trên Căn3-2 - 28-10căn3 trên 5-Căn3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2-\sqrt{3}\right)^x+\left(7-4\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
Ta có: \(2-\sqrt{3}=\frac{1}{2+\sqrt{3}}\)
\(7-4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
\(\left(2-\sqrt{3}\right)^x+\left(7-4\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
<=> \(\frac{1}{\left(2+\sqrt{3}\right)^x}+\left(2-\sqrt{3}\right)^2\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\)
<=> \(1+\left(2-\sqrt{3}\right)^2\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^x=4\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x\)
<=> \(1+\left(2-\sqrt{3}\right)^2\left(2+\sqrt{3}\right)^{2x}=4\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x\)
Đặt: \(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=t\)
Ta có pt ẩn t: \(1+t^2=4t\)
<=> \(t^2-4t+1=0\Leftrightarrow\orbr{\begin{cases}t=2-\sqrt{3}\\t=2+\sqrt{3}\end{cases}}\)
+) Với \(t=2+\sqrt{3}\), ta có:
\(\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)^x=2+\sqrt{3}\)
<=> \(\left(2+\sqrt{3}\right)^x=\frac{2+\sqrt{3}}{2-\sqrt{3}}=\left(2+\sqrt{3}\right)^2\)
<=> x=2
Trường hợp còn lại em làm tương tự
\(a,9\sqrt{5}+3\sqrt{20}-7\sqrt{45}=9\sqrt{5}+6\sqrt{5}-21\sqrt{5}=-6\sqrt{5}\\ b,\dfrac{2\sqrt{6}+\sqrt{40}}{\sqrt{3}+\sqrt{5}}=\dfrac{2\sqrt{6}+2\sqrt{10}}{\sqrt{3}+\sqrt{5}}\\ =\dfrac{2\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{2\sqrt{2}\left(5-3\right)}{5-3}=2\sqrt{2}\)
Sửa đề `->sqrt{7+4sqrt3}`
`=sqrt{7+4sqrt3}`
`=sqrt{4+2.2.sqrt3+3}`
`=sqrt{(2+sqrt3)^2}`
`=|2+sqrt3|`
`=2+sqrt3`
\(\sqrt{2-\sqrt{3}}=\frac{\sqrt{2}.\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{2.\left(2-\sqrt{3}\right)}}{\sqrt{2}}=\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{2}}=\frac{\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\frac{\left|\sqrt{3}-1\right|}{\sqrt{2}}=\frac{\sqrt{3}-1}{\sqrt{2}}=\frac{\sqrt{2}.\left(\sqrt{3}-1\right)}{\sqrt{2}.\sqrt{2}}=\frac{\sqrt{2}.\sqrt{3}-\sqrt{2}.1}{\sqrt{2.2}}=\frac{\sqrt{2.3}-\sqrt{2}}{\sqrt{4}}=\frac{\sqrt{6}-\sqrt{2}}{2}\)
ĐKXĐ: `x>=0;x\ne9`
`(x^2-3)/(sqrtx-3)=((x-sqrt3)(x+sqrt3))/(x+sqrt3)=x-sqrt3`
Ta có: \(\dfrac{7-4\sqrt{3}}{\sqrt{3}-2}-\dfrac{28-10\sqrt{3}}{5-\sqrt{3}}\)
\(=\dfrac{\left(\sqrt{3}-2\right)^2}{\sqrt{3}-2}-\dfrac{\left(5-\sqrt{3}\right)^2}{5-\sqrt{3}}\)
\(=\sqrt{3}-2-5+\sqrt{3}\)
=-7