Cho hình thang ABCD có đáy nhỏ AB=3 cm. GọiN,I là trung điểm các đường chéo. Biết độ dài đường trung bình bằng 5. Khi đó độ dài của là CI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ dàng chứng minh được N,I cùng nằm trên đường trung bình của hình thang (Có thể chứng minh theo tiên đề Ơ-clit)
Khi đó ta có \(NP=IQ=\frac{1}{2}AB=\frac{3}{2}\left(cm\right)\)
NI = PQ - 2NP = 5-3 = 2 (cm)
Chỉ làm r: Câu hỏi của ༺ ๖ۣۜPhạm ✌Tuấn ✌Kiệτ ༻ - Toán lớp 8 | Học trực tuyến
Gọi EF là đường trung bình của hình thang ABCD.
Khi đó:
E là trung điểm của AD
F là trung điểm của BC
EF = 5 (cm)
Tam giác ABD có:
E là trung điểm của AD
N là trung điểm của BD
=> EN là đường trung bình của tam giác ACD
\(\Rightarrow EN=\frac{AB}{2}=\frac{3}{2}=1,5\left(cm\right)\)
Tam giác ABC có:
F là trung điểm của BC
I là trung điểm của AC
=> FI là đường trung bình của tam giác ABC
\(\Rightarrow FI=\frac{AB}{2}=\frac{3}{2}=1,5\)
\(NI=FE-EN-FI=5-1,5-1,5=2\left(cm\right)\)
thế là pa cũng đúng. Pa ngại suy nghĩ rồi điền luôn là 2cm
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
câu 3:
Độ dài đường trung bình
\(\frac{2,2+5,8}{2}=4\left(cm\right)\)
câu4 :
Gọi x la độ dài đáy nhỏ thì đáy lớn là :2x
ta có; \(\frac{x+2x}{2}=12\)
<=>\(\frac{3x}{2}=12\)
<=>3x=12.2=24
<=>x=8
Vậy đáy nhỏ là 8cm đáy lớn là 2x=2.8=16( cm)
đúng cho mjk nhé