CMR: 10000000.........001 gồm 2002 chữ số chia hết cho 1001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) 2^99 999 + 2^100 000 + 2^100 001
= 2^99 999.1 + 2^99 999.2 + 2^99 999.4
=2^99 999.(1+2+4)
=2^99 999.7=> chia hết cho 7.
27 chữ số 1 có dạng:11111....11111(27 chữ số 1)
mà 111111.....111111chia hết cho 27 =>11111....111 chia hết cho 3 và 9
=> 1+1+1+1+...+1+1chia hết cho 3 và 9 hay 27 chia hết cho 3 và 9
vậy 111111..1111 chia hết cho 27
tương tự
Gọi A=11...1⏟,B=11...1⏟. Đặt C=A:B thì
81 chữ số 9 chữ số
C=10...0⏟10...0⏟1...0...0⏟1 gồm 9 chữ số 1 và 64 chữ số 0, chia hết cho 9.
8 chữ số 8 chữ số 8 chữ số
Ta thấy A=B.C mà B và C cùng chia hết cho 9, vậy A chia hết cho 81.
Đặt
P =1^2002 + 2^2002 + 3^2002 +4^2002 +...+ 2002^2002
Q = 1^2+2^2+..+ 2002^2, ta có Q = 1/6*2002*2003*(2.2002+1) ≡ 0 (mod 11)
{Công thức 1^2 +2^2 +...+ n^2 = n(n+1)(2n+1)/6}
P - Q = (1^2002 -1^2) + (2^2002-2^2) +..+ (2^2002 -2002^2)
Theo định lý Fermat nhỏ thì a^(p-1) ≡ 1 (mod p)
=> a^10 ≡ 1 (mod 11)
=> a^2000 ≡ 1 (mod 11)
=> a^2002 ≡ a^2 (mod 11) (*)
Từ (*) => P - Q ≡ 0 (mod 11)
mà Q ≡ 0 (mod 11) theo cm trên
=> P ≡ 0 (mod 11)
giả sử ta đã làm xong