- t=3h. Nửa giờ đầu xe đi với vận tốc 20km/h. Thời gian còn lại đi với vận tốc 35km/h. Tính vận tốc trung bình trên cả quãng đường
- Mọi người giúp với ạ hicc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có vẻ hơi thiếu dữ kiện rồi, bạn phải cho quãng đường hoặc thời gian của cả 2 đoạn đường thì mới tính được
ta có: v1 = 20km/h; v2 = 40km/h; v3 = 30km/h
Quãng đường xe máy đi được trong thời gian t1=(1/3).t là:
S1= t1.v1= (1/3).t.20= (20/3).t
Thời gian xe máy đi với vận tốc v2= 40km/h là:
t2 = (2/3).(t - (1/3).t)= (4/9).t
Quãng đường xe máy đi đc trong thời gian t2=(4/9).t là:
S2=v2.t2=40.(4/9).t= (160/9).t
Thời gian xe máy đi quãng đường cuối cùng là:
t3=t-(1/3).t - (4/9).t = (2/9).t
Quãng đg cuối cùng dài : S3=v3.t3= 30.(2/9).t = (20/3).t
Vận tốc trung bình của xe máy trên cả quãng đường AB là:
vtb=(S1+S2+S3)/t=( (20/3).t + (160/9).t + (20/3).t )/t = 280/9 (km/h)
Vận tốc trung bình trên cả quãng đường là:
(15 : 2 x 2 + 20 + 30) : 4 = 16,25 (km/h)
Đáp số: 16,25 km/h
Vận tốc trung bình trên cả quãng đường là:
(15 : 2 x 2 + 20 + 30) : 4 = 16,25 (km/giờ)
Đáp số:16,25 km/giờ
\(=>vtb=\dfrac{S}{\dfrac{\dfrac{1}{2}S}{v1}+\dfrac{\dfrac{1}{2}S}{v2}}=\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{2v2}}=\dfrac{S}{\dfrac{S\left(2v2+40\right)}{80v2}}=\dfrac{80v2}{2v2+40}=15\)
\(=>v2=12km/h\)
Gọi $s$ là chiều dài đoạn đường $AB$.
Thời gian đi nửa đoạn đường đầu tiên là:$t_1=\frac{\frac{s}{2} }{v_1}=\frac{s}{2v_1}$, với $v_1=20$km/h
Gọi $t_2$ là thời gian đi nửa đoạn đường còn lại, thì theo đề bài trong khoảng thời gian $\frac{t_2}{2}$
Người đó đi với vận tốc $v_2=10$ km/h; do đó đoạn đường đi được trong thời gian này là: $v_2.\frac{t_2}{2}$. Và cuối cùng trong thời gian $\frac{t_2}{2} $
Còn lại người đó dắt bộ với vận tốc $v_3=5$ km/h; do đó đoạn đường đi được trong thời gian này là $v_3.\frac{t_2}{2} $. Như vậy ta có: $\frac{s}{2}=v_2.\frac{t_2}{2}+v_3.\frac{t_2}{2} $,
Suy ra $t_2=\frac{s}{v_2+v_3} $. Thời gian đi hết toàn bộ quãng đường $AB$ là:
$t=t_1+t_2=\frac{s}{2v_1}+\frac{s}{v_2+v_3}=s\left ( \frac{1}{2v_1}+\frac{1}{v_2+v_3} \right ) $
Từ đó, vận tốc trung bình trên cả đoạn đường $AB$ là:
$v=\frac{s}{t}=\frac{1}{\frac{1}{2v_1}+\frac{1}{v_2+v_3} } $
Thay số ta được $v=\frac{40.15}{40+25}\approx 10,9$km/h.
b biết làm cách 2 ko? viết về ẩn t2 í. t đang cần làm cách đó gấp
Gọi nửa QĐ là S
vtb = 2s/(s/v1+s/v2) = 2/(1/12+1/20) = 15km/h
ta có:
nửa thời gian đầu người đó đi được là:
\(S_1=v_1t_1=30km\)
thời gian còn lại người đó đi được là:
\(S_2=v_2t_2=52,5km\)
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S_1+S_2}{t}=\frac{145}{6}\) km/h
t1 = 30p = 0,5h
t2 = 3 - 0,5 = 2,5h
s1 = v1.t1 = 20.0,5 = 10km
s2 = v2t2 = 35.2,5 = 87,5km
vtb = (s1 +s2) / (t1 + t2) = 97,5 / 3 = 32,5km/h