Tính giá trị của biểu thức: A = x15 - 2015x14 + 2015x13 - 2015x12 +...- 2015x2 + 2015x - 1 với x = 2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=x4-2223x3+2223x2-2223x+2223
=x3(x-2223)+x(x-2223)+2222x2+2003(*)
thay x=2222,ta co:
(*)<=>-22223-2222+22223+2223=1
dung thi chon nha
\(x^4-2015x^3+2015x^2-2015x+2015\)
\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)(vì x=2014 nên 2015=x+1)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(=1\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=1\end{matrix}\right.\)
\(A=x_1^5+x_2^5=\left(x_1^2+x_2^2\right)\left(x_1^3+x_2^3\right)-x_1^2x_2^2\left(x_1+x_2\right)\\ \Leftrightarrow A=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\left[\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\right]-a\\ \Leftrightarrow A=\left(a^2-2\right)\left(a^3-3a\right)-a\\ \Leftrightarrow A=a^5-5a^3+5a\)
Xin lỗi nha.\(x^{10}-2015x^9-2015x^8-2017x^7-...-2015x-1\)