một ô xuất phát từ a đến b, trên nửa đoạn đường đầu đi với vận tốc v1, nửa quãng đường sau đi với vận tốc v2. Một ô tô thứ 2 xuất phát từ b đến a, trong nửa thời gian đầu đi với vận tốc là v2 và nửa thời gian sau đi với v1. Biết v1= 60km/h, v2=40km/h. Tính vận tốc trung bình của mỗi xe. Nếu xe đi từ B xuất phát muộn hơn 30phut so với xe đi từ A thì 2 xe đến đích cùng 1 lúc. Tính quãng đương Ab
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thời gian đi của ô tô thứ nhất:
\(t_1=\dfrac{s}{2v_1}+\dfrac{s}{2v_2}=\dfrac{s\left(v_1+v_2\right)}{2v_1v_2}\)
Vận tốc trung bình của ô tô thứ nhất:
\(v_{tbA}=\dfrac{s}{t}=\dfrac{2v_1v_2}{v_1+v_2}=\dfrac{2.20.60}{20+60}=30km/h\)
Theo đề ta có: \(s=\dfrac{t_2}{2}v_1+\dfrac{t_2}{2}v_2=t_2\left(\dfrac{v_1+v_2}{2}\right)\)
Vận tốc trung bình của ô tô thứ hai:
\(v_{tbB}=\dfrac{s}{t_2}=\dfrac{v_1+v_2}{2}=\dfrac{20+60}{2}=40km/h\)
Theo đề bài ta có: \(\dfrac{s}{v_A}-\dfrac{s}{v_B}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{s}{30}-\dfrac{s}{40}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{4s}{120}-\dfrac{3s}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow s=60\left(km\right)\)
Vậy hai xe xuất phát cùng lúc sẽ gặp nhau sau:
\(s_1+s_2=s_{AB}\)
\(\Leftrightarrow30t+40t=60\)
\(\Leftrightarrow70t=60\)
\(\Leftrightarrow t=\dfrac{60}{70}\approx0,9\left(h\right)\)
Hai xe gặp nhau tại điểm cách điểm A:
\(s_1=v_A.t=30.0,9=27\left(km\right)\)
Thời gian xe A chạy trên nữa quãng đường đầu:
\(t_1=\dfrac{\dfrac{s_{AB}}{2}}{\upsilon_1}=\dfrac{\dfrac{s_{AB}}{2}}{20}=\dfrac{s_{AB}}{2.20}=\dfrac{s_{AB}}{40}\left(h\right)\)
Thời gian xe A chạy trên nữa quãng đường sau:
\(t_2=\dfrac{\dfrac{s_{AB}}{2}}{\upsilon_2}=\dfrac{\dfrac{s_{AB}}{s}}{60}=\dfrac{s_{AB}}{2.60}=\dfrac{s_{AB}}{120}\left(h\right)\)
Vận tốc trung bình của xe A trên cả quãng đường AB:
\(\upsilon_{tbA}=\dfrac{\dfrac{s_{AB}}{2}+\dfrac{s_{AB}}{2}}{\dfrac{s_{AB}}{40}+\dfrac{s_{AB}}{120}}=\dfrac{s_{AB}}{\dfrac{s_{AB}}{40}+\dfrac{s_{AB}}{120}}=\dfrac{s_{AB}}{\dfrac{s_{AB}}{30}}=30\left(km/h\right)\)
Quãng đường mà xe B đi được trong nữa thời gian đầu:
\(s_1=\upsilon_1.\dfrac{t}{2}=20.\dfrac{t}{2}=10t\left(km\right)\)
Quãng đường xe B đi được trong nữa thời gian sau:
\(s_2=\upsilon_2.\dfrac{t}{2}=60.\dfrac{t}{2}=30t\left(km\right)\)
Vận tốc trung bình của xe B trên cả quãng đường AB:
\(\upsilon_{tbB}=\dfrac{s_1+s_2}{\dfrac{t}{2}+\dfrac{t}{2}}=\dfrac{10t+30t}{t}=\dfrac{40t}{t}=40\left(km/h\right)\)
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
mink có câu trả lời rùi
có ai có nhu cầu cần trả lời thì nói mink nha
a, Thời gian đi xe máy từ A là
\(t=t_1+t_2=\dfrac{s_1}{v_1}+\dfrac{s_2}{v_2}=\dfrac{AB}{2v_1}=\dfrac{AB}{2v_2}=\dfrac{AB}{30}\)
Thời gian xe ô tô đi từ B:
\(AB=v_1.\dfrac{t}{2}+v_2.\dfrac{t}{2}=t\left(\dfrac{v_1}{2}+\dfrac{v_2}{2}\right)=40t\\ \Rightarrow30t_{xe.máy}=49t_{xe.ô.tô}\\ \Rightarrow t_{xm}=\dfrac{4}{3}t_{xôt}\)
Mà
\(t_{xm}=t_{xôt}+0,5\left(30'=0,5h\right)\\ \Rightarrow\left\{{}\begin{matrix}t_{xôt}=1,5\left(h\right)\\t_{xm}=2\left(h\right)\end{matrix}\right.\\ \Rightarrow AB=60km\\ \Rightarrow\left\{{}\begin{matrix}v_{xm}=30\left(km/h\right)\\v_{xôt}=40\left(kmh/\right)\end{matrix}\right.\)
b, Xét thời gian 2 xe đổi \(v\)
\(t_{xôt}=\dfrac{t_{xm}}{2}=0,75\left(h\right)\\ t_{xm}=\dfrac{AB}{2v_1}=1,5\left(h\right)\)
Xe ô tô đổi vận tốc trước :
\(t=0,75\left(h\right)\)
2 xe còn cách nhau :
\(=69-2v_1.0,75=30\left(km\right)\)
Từ t = 0,75(h)
\(\rightarrow Xe.ô.tô.đi.với.v_2,xe.máy.vẫn.v_1\)
2 xe gặp nhau sau :
\(t=\dfrac{30}{\left(v_1+v_2\right)}=0,5\left(h\right)\)
Xe máy đi thêm được \(0,5.v_1=10\left(km\right)\)
Điểm gặp nhau cách A số km là
\(15+10=25\left(km\right)\)
1/ gọi t1 là thời gian ô tô chạy 1/3 quãng đường đầu
=> t1 = s / ( 3 * v1 ) = s / 120
gọi t2 là thời gian ô tô chạy 1/3 quãng đường tiếp theo
=> t2 = s / ( 3 * v2 ) = s / 150
gọi t3 là thời gian ô tô chạy 1/3 quãng đường cuối cùng
=> t3 = s / ( 3 * v3 )
ta có v tb = s / t = s / ( s / 120 + s / 150 + s / ( 3 *v3) )
=> 45 = s / [s ( 1/ 120 + 1/ 150 + 1/ ( 3 *v3 ) ) ]
=> 45 = 1 / ( 3 / 200 + 1 / ( 3 * v3 )
=> 1 / 45 = 3 / 200 + 1/ ( 3 * v3 )
=> 1 / ( 3 *v3 ) = 1 / 45 - 3 / 200
=> 1 / ( 3 *v3 ) = 13 / 1800
=> 3 * v3 = 1800 / 13
=> v3 = 1800 / 39 = khoảng 46,15 km / h
2/Tính vận tốc trung bình của xe đi từ A đến B
vtb = s/t
theo bài ra ta có : s/2 = 20*t1 và s/2 = 60*t2
=> vtb = s/( t1 + t2) = s/ ( s/40 + s/ 120 ) = 30 (km/h)
Tính vận tốc trung bình của xe đi từ B đến A
theo bài ra ta cũng có
t/2 = s1/20 và t/2 = s2/60
=> vtb" = (s1 + s2 )/t = ( 10t + 30t )/t = 40 ( km/h)
Mà nếu xe từ B xuất phát muộn hơn so với xe xuất phát từ A 30phút = 1/2 h thì 2 xe đến địa điểm cùng 1 lúc
=> sA-B = 30*t
sB-A = 40 * ( t - 1/2)
Mà sA-B = sB-A => 30*t = 40 * ( t - 1/2) => t= 2 (h)
Vậy s = 60 ( km)
a) Ta có: \(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{S}{2v_1}=\dfrac{S}{40}\left(h\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{S}{2v_2}=\dfrac{S}{120}\left(h\right)\end{matrix}\right.\)
Vận tốc TB ô tô đi từ M đến N:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{120}}=\dfrac{S}{S\left(\dfrac{1}{40}+\dfrac{1}{120}\right)}=30\left(\dfrac{km}{h}\right)\)
b) Ta có: \(\left\{{}\begin{matrix}S_1'=t_1'.v_1=20t\left(km\right)\\S_2'=t_2'.v_2=60t\left(km\right)\end{matrix}\right.\)
Vận tốc TB ô tô đi từ N về M:
\(v_{tb}'=\dfrac{S_1'+S_2'}{t_1'+t_2'}=\dfrac{20t+60t}{2t}=40\left(\dfrac{km}{h}\right)\)
Thời gian đi và thời gian về lần lượt là:
\(t=\dfrac{S}{30}\left(h\right),t'=\dfrac{S}{40}\left(h\right)\Rightarrow t>t'\)
Vậy thời gian đi nhiều hơn thời gian về
d) Theo đề bài ta có:
\(t-t'=0,5\Rightarrow\dfrac{S}{30}-\dfrac{S}{40}=0,5\Rightarrow S\left(\dfrac{1}{30}-\dfrac{1}{40}\right)=0,5\Rightarrow S_{MN}=60\left(km\right)\)
Giải thích các bước giải:
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )