K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2016

a, △ABC có:  là trung điểm của BC là trung điểm của 

⇒DE là đường trung bình của 

b, Có: F là điểm đối xứng với D qua E

 (theo (2),(3)⇒ABDF là hình bình hành 

c, ABDF là hình bình hành 

Mặt khác  là trung điểm của  nên  

(4),(5)⇒ADCF là hình bình hành

Ta lại có: AB//DF⇒AC⊥DF

Vậy hình bình hành có hai đường chéo vuông góc hay là là hình thoi 

Có  là hình thoi 

 có  (AC⊥DF)

(Định lý Pythagore)

thay AE=4 và DE=3 tính được 

d, Để  là hình vuông thì 

Mà có  nên  khi và chỉ khi  là đường trung trực của 

Tức là  hay  vuông cân tại A

Điều kiện để  là hình vuông là  vuông cân tại A

sai thì thôi nha

17 tháng 10 2016

thank nhiều

29 tháng 11 2021

a, Trong △ABC có:

là trung điểm của BCE là trung điểm của AC.

⇒ DE là đường trung bình của △ABC.

⇒ DE = 1/2AB (1)

và: DE // AB (2)

Từ (1) suy ra: DE = 1/2 . 6 = 3.

b, Ta có: F là điểm đối xứng với D qua E nên:

DE = DF

⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo (1)

Từ (2),(3) suy ra: ABDF là hình bình hành.

c, Do ABDF là hình bình hành nên:

AF // BD (4) và: AF = BD

Mặt khác, ta có: là trung điểm của BC

=> BD = BC. Mà: AF = BD (cmt)

=> BC = AF (5).

Từ (4) và (5) suy ra: Tứ giác ADCF là hình bình hành.

Ta lại có: AB⊥AC (góc A = 90o)

và: AB // DF

⇒ AC⊥DF.

Vậy, hình bình hành ADCF có hai đường chéo vuông góc hay:

ADCF là hình thoi.

Ta có: ADCF là hình thoi ⇒AE = 1/2AC = 4.

Xét △ADE có: góc E = 90 (AC⊥DF)

⇒ AE+ DE= AD2 (Định lý Pythagore)

thay số: 4+ 32 = AD2

16 + 9 = AD2

25 = AD=> AD = 5 cm.

d, Để ADCF là hình vuông thì: AD⊥BC.

Mà: DC = DB = 1/2BC (gt) nên:

AD⊥BC khi và chỉ khi AD là đường trung trực của BC hay:

AB = AC

=> △ABC vuông cân tại A.

Vậy, điều kiện để ADCF là hình vuông là △ABC vuông cân tại A

27 tháng 11 2017

3 tháng 11 2022

cho \(\Delta ABCD\)

a: Xét ΔABC có 

D là trung điểm của BC

F là trung điểm của AC

Do đó: DF là đường trung bình của ΔABC

Suy ra: DF//AB

hay ABDF là hình thang

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

24 tháng 12 2021

a: Xét tứ giác BFCE có

D là trung điểm của BC

D là trung điểm của FE

Do đó: BFCE là hình bình hành