K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Bài 1 : Sửa đề :

Tìm x,y,z 

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Ta có : \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z(1)\)

Áp dụng tính chất bằng nhau của tỉ lệ thức ta được :

\(\frac{x+y+z}{2\left[x+y+z\right]}=x+y+z(2)\)

Nếu x + y + z = 0 thì từ 1 suy ra : x = 0 , y = 0 , z = 0

Nếu x + y + z \(\ne\)0 thì từ 2 suy ra \(\frac{1}{2}=x+y+z\), khi đó 1 trở thành :

\(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)

Do đó : \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-\frac{3}{2}-z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy có hai đáp số : \(\left[0,0,0\right]\)và \(\left[\frac{1}{2};\frac{1}{2};-\frac{1}{2}\right]\)

Bài 2 : Từ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)

=> \(\frac{1+4y}{24}=\frac{1+2y+1+6y}{18+6x}\)

=> \(\frac{1+4y}{24}=\frac{2+8y}{2\left[9+3x\right]}\)

=> 9 + 3x = 24 => 3x = 15 => x = 5,y tự tìm

Tìm nốt bài cuối nhé 

7 tháng 8 2015

\(\frac{x}{1}=\frac{4x}{4};\frac{y}{2}=\frac{3y}{6};\frac{z}{3}=\frac{2z}{6}\)

mà \(\frac{x}{1}=\frac{y}{3}=\frac{z}{2}\) nên \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)

áp dụng t/c dãy các tỉ số bằng nhau ta có 

 \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)

nếu \(\frac{x}{1}=9=>x=9\)

        

25 tháng 9 2018

\(3x=y\)=>  \(\frac{x}{1}=\frac{y}{3}\)

hay  \(\frac{x}{4}=\frac{y}{12}\)

\(5y=4z\)=>  \(\frac{y}{4}=\frac{z}{5}\)

hay  \(\frac{y}{12}=\frac{z}{15}\)

suy ra:   \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

đến đây bạn ADTCDTSBN nhé

19 tháng 8 2015

bài 4 : Ta có : \(\frac{1+2y}{18}=\frac{1+4y}{24}\left(1\right)\)
\(\Rightarrow24+48y=18+72y \)
\(\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\left(2\right)\)
Thay y = \(\frac{1}{4}\) vào (2) ta được x = 5 (thõa mãn )

 

24 tháng 6 2015

giup di ma cac cau huhu

1 tháng 4 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\({1+3y \over 12}={1+5y \over 5x}={1+7y \over 4x}={1+5y \over 4+3x}\)

Suy ra: 5x=3x+4 nên x = 2 từ đó tìm y