\({3x + 5 \over x^2 - 5x} + {25-x \over 25-5x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài là: \(\frac{3\text{x}+5}{x^2-5\text{x}+25}-\frac{x}{25-5\text{x}}\)
hay: \(\frac{3\text{x}+5}{\frac{x^2-5\text{x}+25-x}{25-5\text{x}}}\)
thế bạn?
\(a,=\dfrac{15x+25-25x+x^2}{5x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\\ b,=\dfrac{x^2-x-2+x-7+x+3}{\left(x+3\right)\left(x-2\right)}=\dfrac{x^2+x-6}{x^2+x-6}=1\)
\(a,\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)
\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{25-x}{5\left(5-x\right)}\)
\(=\dfrac{-3x-5}{x\left(5-x\right)}+\dfrac{25-x}{5\left(5-x\right)}\)
\(=\dfrac{5\left(-3x-5\right)}{5x\left(5-x\right)}+\dfrac{x\left(25-x\right)}{5x\left(5-x\right)}\)
\(=\dfrac{-15x-25+25x-x^2}{5x\left(5-x\right)}\)
\(=\dfrac{10x-25-x^2}{5x\left(5-x\right)}\)
\(=\dfrac{-\left(5-x\right)^2}{5x\left(5-x\right)}\)
\(=\dfrac{-5+x}{5x}\)
\(b,\dfrac{x+1}{x+3}+\dfrac{x-7}{x^2+x-6}+\dfrac{1}{x-2}\)
\(=\dfrac{x+1}{x+3}+\dfrac{x-7}{\left(x+3\right)\left(x-2\right)}+\dfrac{1}{x-2}\)
\(=\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}+\dfrac{x-7}{\left(x+3\right)\left(x-2\right)}+\dfrac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2-2x+x-2+x-7+x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2+x-6}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x^2+x-6}{x^2-2x+3x-6}\)
\(=\dfrac{x^2+x-6}{x^2+x-6}\)
\(=1\)
1) \(\left(5x-1\right)\left(5x+1\right)=25x^2-7x+15\)
\(\Leftrightarrow25x^2-1=25x^2-7x+15\)
\(\Leftrightarrow7x=16\Leftrightarrow x=\dfrac{16}{7}\)
2) \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Leftrightarrow5x=0\Leftrightarrow x=0\)
\(\left(\frac{3x-5}{x^2-5x}-\frac{x+5}{5x-25}\right):\frac{x^2-25}{x}\)
\(=\left[\frac{3x-5}{x\left(x-5\right)}-\frac{x+5}{5\left(x-5\right)}\right].\frac{x}{x^2-25}\)
\(=\left[\frac{\left(3x-5\right).5}{x\left(x-5\right).5}-\frac{\left(x+5\right).x}{5\left(x-5\right).x}\right].\frac{x}{x^2-25}\)
\(=\left[\frac{15x-25}{5x\left(x-5\right)}-\frac{x^2+5x}{5x\left(x-5\right)}\right].\frac{x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{15x-25-x^2-5x}{5x\left(x-5\right)}.\frac{x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{-x^2+10x-25}{5x\left(x-5\right)}.\frac{x}{\left(x-5\right)\left(x+5\right)}\)
\(=\frac{-\left(x-5\right)^2.x}{5x\left(x-5\right)\left(x-5\right)\left(x+5\right)}\)
\(=\frac{-1}{5\left(x+5\right)}\).
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
a) Ta có: \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
\(\Leftrightarrow\frac{x-17}{33}-1+\frac{x-21}{29}-1+\frac{x}{25}-2=0\)
\(\Leftrightarrow\frac{x-17-33}{33}+\frac{x-21-29}{29}+\frac{x-2\cdot25}{25}=0\)
\(\Leftrightarrow\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
\(\Leftrightarrow\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}>0\)
nên x-50=0
hay x=50
Vậy: x=50
b) Ta có: \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)=2\)
\(\Leftrightarrow-15x^2+46x-35+15x^2-4x-4-2=0\)
\(\Leftrightarrow42x-41=0\)
\(\Leftrightarrow42x=41\)
hay \(x=\frac{41}{42}\)
a, \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
\(\Leftrightarrow\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=4-4\)
\(\Leftrightarrow\left(\frac{x-17-33}{33}\right)+\left(\frac{x-21-29}{29}\right)+\left(\frac{x-2.25}{25}\right)=0\)
\(\Leftrightarrow\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
\(\Leftrightarrow\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\) (*)
Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}>0\Rightarrow\) Phương trình (*) xảy ra khi: \(x-50=0\Leftrightarrow x=50\)
Vậy phương trình có nghiệm duy nhất là x = 50.
=\(\frac{3x+5}{-x.\left(-x+5\right)}\)+\(\frac{25-x}{-5x+25}\)
=\(\frac{1x-25-x^2}{5x.\left(-\left(x-5\right)\right)}\)
=\(\frac{-\left(x^2-10x+25\right)}{5x.\left(-\left(x-5\right)\right)}\)
=\(\frac{x-5}{5x}\)