K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 8 2021

a. Đa giác n đỉnh có \(C_n^2\) đoạn thẳng nối các đỉnh

Trong đó có n cạnh (là đường nối 2 đỉnh liền kế)

\(\Rightarrow\) Có \(C_n^2-n\) đường chéo

b. Cứ 3 đỉnh tạo thành 1 tam giác nên số tam giác là: \(C_n^3\)

c. Tam giác có 2 cạnh là 2 cạnh của tam giác khi 3 đỉnh của tam giác là 3 đỉnh liền kề

\(\Rightarrow\) có n tam giác thỏa mãn

d. Số tam giác chỉ có 1 cạnh là cạnh đa giác: có n cách chọn 2 điểm liền kề, ta có \(n-4\) cách chọn 1 điểm còn lại ko kề với 2 điểm trên

\(\Rightarrow n\left(n-4\right)\) tam giac thỏa mãn

e. Số tam giác thỏa mãn: \(C_n^3-\left(n+n\left(n-4\right)\right)\) 

17 tháng 8 2017

20 tháng 1 2019

Đáp án C.

22 tháng 8 2021

Hồng Phúc CTV, Nguyễn Việt Lâm

4 tháng 1 2018

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là: C 2 n 3  

Số đường chéo đi qua tâm là n ⇒ số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2

Số tam giác vuông được tạo thành là  4 C n 2

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 8.

SỐ tam giác tạo được từ 3 đỉnh là \(C^3_{12}\)

Số tam giác có 3 đỉnh là 3 đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn

=>Có 12 tam giác

Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác

=>CÓ 8*12=96 tam giác

=>\(P=\dfrac{C^3_{12}-12-12\cdot8}{C^3_{12}}\)

27 tháng 4 2018

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là:  C 2 n 3

Số đường chéo đi qua tâm là n => số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2 .

Số tam giác vuông được tạo thành là:  4 . C n 2 .

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 1 8 .