giúp mk bài này vs ạ
a) \(\frac{3x+1}{5y+2}=\frac{6x+3}{10y+6}\)
b)\(\frac{3x+1}{5y+2}=\frac{3x-2}{5y+4}\)
Đầu bài của bài này là : Tìm \(\frac{x}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
= \(\frac{3x\left(x-y\right)}{5.2.\left(x+y\right)\left(x-y\right)}-\frac{x\left(x+y\right)}{10\left(x^2-y^2\right)}\)
= \(\frac{3x^2-3xy-x^2-xy}{10\left(x^2-y^2\right)}\)
= \(\frac{3x\left(x-y\right)}{10\left(x^2-y^2\right)}\)
= \(\frac{3x}{10\left(x+y\right)}\)
\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)
\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)
\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)
\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)
chỗ cuối tớ sai
\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)
đây nha , e xin lỗi
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
Bài 1:
\(\frac{4}{12}+\frac{4}{20}+\frac{4}{30}+...+\frac{4}{306}\)
\(=4\cdot\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{306}\right)\)
\(=4\cdot\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{17\cdot18}\right)\)
\(=4\cdot\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{17}-\frac{1}{18}\right)\)
\(=4\cdot\left(\frac{1}{3}-\frac{1}{18}\right)\)
\(=4\cdot\left(\frac{6}{18}-\frac{1}{18}\right)\)
\(=4\cdot\frac{5}{18}\)
\(=\frac{10}{9}\)
Bài 2 :
\(\left(3x-4\right)-\left(6x+7\right)=8\)
\(3x-4-6x-7=8\)
\(\left(3x-6x\right)-\left(4+7\right)=8\)
\(-3x-11=8\)
\(-3x=8+11\)
\(-3x=19\)
\(x=19:\left(-3\right)\)
\(x=\frac{-19}{3}\)
Vậy \(x=\frac{-19}{3}\)
b ) \(\left(\frac{4}{5}x+3\right):\left(-4\right)=\frac{1}{2}\)
\(\frac{4}{5}x+3=\frac{1}{2}\cdot\left(-4\right)\)
\(\frac{4}{5}x+3=-2\)
\(\frac{4}{5}x=\left(-2\right)-3\)
\(\frac{4}{5}x=-5\)
\(x=\left(-5\right):\frac{4}{5}\)
\(x=\left(-5\right)\cdot\frac{4}{5}\)
\(x=-4\)
Vậy \(x=-4\)
k nha !
\(\frac{4}{12}\)+\(\frac{4}{20}\)+...+\(\frac{4}{306}\)=\(\frac{4}{3.4}\)+\(\frac{4}{4.5}\)+...+\(\frac{4}{17.18}\)=4(\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{17}\)-\(\frac{1}{18}\))
=4(\(\frac{1}{3}\)-\(\frac{1}{8}\))=4.\(\frac{5}{24}\)=\(\frac{5}{6}\)
a ) \(\frac{3x+1}{5y+2}=\frac{6x+3}{10y+6}\)
\(\Leftrightarrow\left(3x+1\right).\left(10y+6\right)=\left(5y+2\right).\left(6x+3\right)\)
\(\Leftrightarrow30xy+18x+10y+6=30xy+15y+12x+6\)
\(\Leftrightarrow6x-5y=0\)
kHÔNG CÓ X,Y THÕA MÃN
cÂU B TƯƠNG TỰ