Cho tam giác vuông tại A kẻ đường cao AH từ H kẻ HE vuông góc vs AC(E€AC BH = 4cm, HC=9cm,AC =3căn 13 cm
Tính AH AB và góc B
CMR BH.CE=AH.HE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\left(1\right)\)
Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AH^2=AE\cdot AB\left(2\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AH^2=AF\cdot AC\left(3\right)\)
Từ (1), (2) và (3) suy ra \(AE\cdot AB=AF\cdot AC=BH\cdot HC\)
b: Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
\(a,\) Áp dụng HTL: \(AH=\sqrt{BH\cdot HC}=6\left(cm\right)\)
Dễ thấy ADHE là hcn nên \(AH=DE=6\left(cm\right)\)
\(b,\) Áp dụng HTL: \(\left\{{}\begin{matrix}AB\cdot AD=AH^2\\AE\cdot AC=AH^2\end{matrix}\right.\Rightarrow AB\cdot AD=AE\cdot AC\)
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)
b:
ΔAHB vuông tại H có HD là đường cao
nên \(HD\cdot AB=HA\cdot HB\)
ΔAHC vuông tại H có HE là đường cao
nên \(HE\cdot AC=HA\cdot HC\)
\(HD\cdot AB+HE\cdot AC\)
\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)
\(=HA\cdot BC=AB\cdot AC\)
c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔABC vuông tại A có AM là trung tuyến
nên AM=MB=MC
\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)
\(=\widehat{DHA}+\widehat{MCA}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM vuông góc DE tại I
ΔADE vuông tại A có AI là đường cao
nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)
a: \(AH=\sqrt{BH\cdot CH}=6\left(cm\right)\)
\(AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}=\dfrac{3}{\sqrt{13}}\)
nên \(\widehat{B}=56^0\)
b: Xét ΔAHB vuông tại H và ΔCEH vuông tại E có
\(\widehat{BAH}=\widehat{C}\)
Do đó: ΔAHB\(\sim\)ΔCEH
Suy ra: \(\dfrac{AH}{CE}=\dfrac{BH}{EH}\)
hay \(AH\cdot HE=CE\cdot BH\)