Cho tam giác ABC, trên nửa mặt phẳng bờ AB chứa điểm C, vẽ tia AD sao cho \(\widehat{DAC}=\widehat{ACB}\). trên nửa mặt phẳng kia vẽ tia AE sao cho \(\widehat{EAB}=\widehat{ABC}\). chứng tỏ 3 điểm E,A,D thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: mà hai góc đó là hai góc so le trong nên
suy ra (1)
mà hai góc đó là hai góc so le trong nên suy ra (2)
Từ (1) và (2) suy ra Ax và Ay cùng // BC.
Lại có tia Ax thuộc mặt phẳng bờ AB có chứa điểm C, tia Ay thuộc mặt phẳng
bờ AB không chứa điểm C
Ax và Ay là hai tia đối nhau.
b) Vì Ax và Ay là hai tia đối nhau (cmt) mà và
nên suy ra
Mà nên suy ra
Hình bạn tự vẽ được đúng không.
Ta có: góc DAC = góc ACB (gt)
Mà hai góc này ở vị trí so le trong đối với hai đường thẳng DA, BC và cát tuyến AC.
=> AD//BC (dhnb 2 đường thẳng //) (1)
CM tương tự với góc EAB, ABC
=> EA//BC (2)
Từ (1) và (2) => AD//EA
=> E,A,D thẳng hàng.
Ta có: góc DAC = góc ACB (gt)
Mà hai góc này ở vị trí so le trong đối với hai đường thẳng DA, BC và cát tuyến AC.
=> AD//BC (dhnb 2 đường thẳng //) (1)
CM tương tự với góc EAB, ABC
=> EA//BC (2)
Từ (1) và (2) => AD//EA
=> E,A,D thẳng hàng.