K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Đặt (P) : y = ax2

(P') : y = ax2+bx+c

Ta có : (P') : \(y=ax^2+bx+c=a\left(x^2+\frac{2.x.b}{2a}+\frac{b^2}{4a^2}-\frac{b^2}{4a^2}\right)+c\)

\(=a\left(x+\frac{b}{2a}\right)^2+c-\frac{b^2}{4a}=a\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a}\)

Đặt \(p=\frac{b}{2a}\) , \(q=-\frac{b^2-4ac}{4a}\) thì khi đó

\(\left(P'\right):y=a\left(x+p\right)^2+q\)

Điều này có nghĩa là ta tịnh tiến (P) sang phải p đơn vị , tịnh tiến lên trên q đơn vị thì được (P') => (P') thực chất là "phép tịnh tiến" của (P)

Từ đó bạn rút ra được điều phải chứng minh nhé!

Cách chứng minh trong SGK có viết rất rõ rồi , bạn tham khảo nhé !

 

11 tháng 11 2016

Mình quên mất ,bạn chú ý rằng các giá trị a,b,c chưa xác định do vậy ta chỉ cần nói (P') là phép tịnh tiến của (P) thôi nhé, còn trái phải lên xuống chưa rõ ^^

27 tháng 7 2017

Đáp án là C

14 tháng 7 2019

Với a = 1; b = -1, hàm số trở thành: y = x 3 + x 2  – x + 1.

- Tập xác định : D = R.

- Sự biến thiên :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận :

Hàm số đồng biến trên (-∞ ; -1) và Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số nghịch biến trên Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

Hàm số đạt cực đại tại x = -1 ; y = 2.

Hàm số đạt cực tiểu tại Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị :

Giải bài 3 trang 146 sgk Giải tích 12 | Để học tốt Toán 12

30 tháng 4 2018

18 tháng 2 2018

Đáp án B

Do đó k = y’(-1) = 3 – 2a + b = 24.

6 tháng 10 2019

Ta có: x = − b 2 a > 0  nên trục đối xứng nằm bên phải trục Oy

Đồ thị cắt trục tung tại điểm (0; c) nằm dưới trục hoành ( vì c < 0).

Do đó, đồ thị B là đồ thị của hàm số đã cho.

Đáp án B

25 tháng 6 2018

Đáp án C.

lim x → - ∞ y = - ∞   ( 1 ) f ( - 1 ) = - 1 + a 2 - b + c > 0   ( 2 ) f ( 2 ) = 8 + 4 a 2 + 2 a + c < 0   ( 3 ) lim x → - ∞ y = + ∞   ( 4 )

Từ (1) và (2) ⇒  Phương trình f (x) = 0 có ít nhất một nghiệm trên - ∞ ; - 1 .

Từ (2) và (3)  ⇒  Phương trình f (x) = 0 có ít nhất một nghiệm trên - 1 ; 2 .

Từ (3) và (4)  ⇒  Phương trình f (x) = 0 có ít nhất một nghiệm trên 2 ; + ∞ .

Do f (x) =0 là phương trình bậc 3 ⇒  Có nhiều nhất 3 nghiệm

⇒  Đường thẳng cắt trục Ox tại 3 điểm phân biệt.

3 tháng 3 2018

28 tháng 7 2019

Đáp án C

Phương pháp giải:

Chọn hệ số a, b, c hoặc đánh giá tích để biện luận số nghiệm của phương trình

Lời giải:

Cách 1. Ta có: 

Lại có  có 3 nghiệm thuộc khoảng 

Cách 2. Chọn  và đồ thị hàm số cắt trục Ox tại 3 điểm phân biệt

17 tháng 2 2022

a, y = ax^2 đi qua B(2;4) 

<=> 4a = 4 <=> a = 1 

b, bạn tự vẽ 

 

a: Thay x=2 và y=4 vào hàm số, ta được:

\(a\cdot4=4\)

hay a=1

b: Thay x=2 và y=4 vào hàm số, ta được:

4a=4

hay a=1