K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2016

là hìnhh chữ nhật thì phải :V

 

25 tháng 7 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: AB // CD (gt)

OE ⊥ AB (gt)

⇒ OE ⊥CD

OG ⊥CD(gt)

Suy ra OE trùng với OG nên ba điểm O,E,G thẳng hàng.

BC // AD (gt)

OF ⊥ BC (gt)

⇒ OF ⊥ AD

OH ⊥ AD (gt)

Suy ra OF trùng với OH nên ba điểm O,H,F thẳng hàng.

Vì AC và BD là đường phân giác các góc của hình thoi nên:

OE = OF ( t/chất tia phân giác) (1)

OE = OH ( t/chất tia phân giác) (2)

OH = OG ( t/chất tia phân giác) (3)

Tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên nó là hình chữ nhật.

11 tháng 12 2023

ABCD là hình thoi

=>AC vuông góc với BD tại trung điểm của mỗi đường

=>AC\(\perp\)BD tại O và O là trung điểm chung của AC và BD

Ta có:ABCD là hình thoi

=>AB//CD và AD//BC và AB=BC=CD=DA

Xét ΔEBO vuông tại E và ΔGDO vuông tại G có

BO=DO

\(\widehat{EBO}=\widehat{GDO}\)

Do đó: ΔEBO=ΔGDO

=>EO=GO

Ta có: ΔEBO=ΔGDO

=>\(\widehat{EOB}=\widehat{GOD}\)

mà \(\widehat{GOD}+\widehat{GOB}=180^0\)(hai góc kề bù)

nên \(\widehat{EOB}+\widehat{GOB}=180^0\)

=>E,O,G thẳng hàng

mà OE=OG

nên O là trung điểm của EG

Xét ΔOHD vuông tại H và ΔOFB vuông tại F có

OD=OB

\(\widehat{ODH}=\widehat{OBF}\)(hai góc so le trong, AD//BC)

Do đó: ΔOHD=ΔOFB

=>OH=OF

Ta có; ΔOHD=ΔOFB

=>\(\widehat{HOD}=\widehat{FOB}\)

mà \(\widehat{FOB}+\widehat{FOD}=180^0\)

nên \(\widehat{HOD}+\widehat{FOD}=180^0\)

=>H,O,F thẳng hàng

mà OH=OF

nên O là trung điểm của HF

ABCD là hình thoi

=>AC là phân giác của góc BAD

=>\(\widehat{BAC}=\widehat{DAC}\)

Xét ΔAEO vuông tại E và ΔAHO vuông tại H có

AO chung

\(\widehat{EAO}=\widehat{HAO}\)

Do đó: ΔAOE=ΔAOH

=>OH=OE

mà \(OH=\dfrac{HF}{2};OE=\dfrac{EG}{2}\)

nên HF=EG

Xét tứ giác EFGH có

O là trung điểm chung của EF và GH

=>EFGH là hình bình hành

Hình bình hành EFGH có HF=EG

nên EFGH là hình chữ nhật

30 tháng 6 2017

Hình thoi

6 tháng 10 2017

Ta có : AB // CD ( gt )

\(OE\perp AB\)( gt )

\(\Rightarrow\)\(OE\perp CD\)

\(OG\perp CD\)( gt )

\(\Rightarrow\)OE trùng với OG nên ba điểm O ; E ; G thẳng hàng 

AB và CD là các là đường phân giác các góc của hình thoi 

OE = OF ( tính chất tia phân giác ) ( 1 )

OE = OH ( tính chất tia phân giác ) ( 2 )

OH = OG ( tính chất tia phân giác ) ( 3 )

Từ ( 1 ) ; ( 2 ) và ( 3 ) suy ra OE = OF = OH = OG 

Tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên là hình chữ nhật 

4 tháng 12 2017

Ta có : AB // CD ( gt )
OE⊥AB( gt )
⇒OE⊥CD
OG⊥CD( gt )
⇒OE trùng với OG nên ba điểm O ; E ; G thẳng hàng
AB và CD là các là đường phân giác các góc của hình thoi
OE = OF ( tính chất tia phân giác ) ( 1 )
OE = OH ( tính chất tia phân giác ) ( 2 )
OH = OG ( tính chất tia phân giác ) ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) suy ra OE = OF = OH = OG
Tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên là hình chữ nhật

chúc bn hok tốt @_@

22 tháng 10 2021

Bài 2: 

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)

Do đó: ADME là hình chữ nhật