K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

a)\(M=x^2-2xy+2y^2-4y+2016\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)

\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)

Dấu = khi \(\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y=0\\y-2=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=y\\y=2\end{cases}\)\(\Leftrightarrow x=y=2\)

Vậy MinM=2012 khi x=y=2

b)\(N=x^2-2xy+2x+2y^2-4y+2016\)

\(=\left(x^2-2xy+2x+y^2-2y+1\right)+\left(y^2-2y+1\right)+2014\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+2014\ge2014\)

Dấu = khi \(\begin{cases}\left(x-y+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-y+1=0\\y-1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x-y+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x-1+1=0\\y=1\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=1\end{cases}\)

Vậy MinN=2014 khi x=0;y=1

 

 

5 tháng 11 2016

\(K=x^2-2xy+2y^2-4y+2016=\)\(x^2-2xy+y^2+y^2-4y+4+2012=\)\(\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012=\)\(\left(x-y\right)^2+\left(y-2\right)^2+2012\)

Vì \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow K_{min}=2012\) Khi \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\y-2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\y=2\end{cases}\Rightarrow}x=y=2}\)

5 tháng 11 2016

\(x^2-2xy+2y^2-4y+2016\)

\(\Leftrightarrow x^2-2xy+y^2+y^2-4y+4+2012\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-2\right)^2+2014\)

Xét đa thức \(\left(x-y\right)^2+\left(y-2\right)^2\)

Dễ thấy \(\left(x-y\right)^2+\left(y-2\right)^2\) luôn luôn dương với mọi giá trị của \(x,y\)

Vậy giá trị nhỏ nhất của k=2014

5 tháng 11 2016

\(K=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012=\left(x-y\right)^2+\left(y-2\right)^2+2012\ge2012\)Min K = 2012 <=> x = y = 2

13 tháng 10 2019

\(A=x^2+2y^2+2xy+2x-4y+2016\)

\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)

\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)

\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)

Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)

Hay \(A\ge2006;\forall x,y\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

13 tháng 10 2019

Mình làm có gì sai hả @@ 

a: A=x^2-2xy+y^2+y^2-4y+4+1

=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2

b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2

=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2

Dấu = xảy ra khi x=1 và y=-1

14 tháng 8 2023

có lời giải chi tiết ko ạ

27 tháng 3 2018

\(A=\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(y^2-6y+9\right)+2006\)\(=\left(x+y\right)^2+2\left(x+y\right)+1+\left(y-3\right)^2+2006\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)

Ta có: \(\left(x+y+1\right)^2+\left(y-3\right)^2\ge0\left(\forall x;y\right)\)

\(\Rightarrow A\ge2006\).

Vậy MIN A = 2006 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)