Cho Δ ABC. Vẽ AH vuông góc với BC tại H, trên tia đối của tia AH lấy điểm D sao cho AH = HD.
a) Chứng minh: Δ ABH = Δ DBH.
b) Chứng minh: BC là phân giác của góc ABD
c) Chứng minh: Góc BAC = Góc BOC
d) Gọi M là trung điểm của AB. Qua M vẽ đường thẳng song song AH và cắt BD tại N.
Chứng minh: N là trung điểm của BD
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
b: Ta có: ΔABH=ΔDBH
nên \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD