Một số tự nhiên chia cho 4 ; 5 ; 6 đều dư 1 , số đó chia hết cho 7 và nhỏ hơn 400 . Tìm số đó ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho sửa câu d nhé số tự nhiên liên tiếp là một số ko chia hết cho 4
1/
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2
+ Nếu \(n⋮3\) Bài toán đã được c/m
+ Nếu n chia 3 dư 1 => \(n+2⋮3\)
+ Nếu n chia 3 dư 2 => \(n+1⋮3\)
Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau
\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)
\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)
\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4
3/
a/ Gọi 3 số TN liên tiếp là n; n+1; n+2
\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)
b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3
\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)
Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
a: Vì trong hai số tự nhiên liên tiếp chắc chắn sẽ có một số chẵn nên trong hai số tự nhiên liên tiếp, sẽ có một số chia hết cho 2
Gọi ba số tự nhiên liên tiếp là \(n,n+1,n+2\)
Xét n = 3k => n chia hết cho 3 (đpcm)
Xét n = 3k + 1 => n + 2 chia hết cho 3 (3k + 3) (đpcm)
Xét n = 3k + 2 => n + 1 chia hết cho 3 (3k + 3) (đpcm)
Giải tương tự có: Gọi 4 số tự nhiên liến tiếp là: \(n,n+1,n+2,n+3\)
Xét n = 4k => n chia hết cho 4 (4k) (đpcm)
Xét n = 4k + 1 => n + 3 chia hết cho 4 (4k + 4) (đpcm)
Xét n = 4k + 2 => n + 2 chia hết cho 4 (4k + 4) (đpcm)
Xét n = 4k + 3 => n + 1 chia hết cho 4 (4k + 4) (đpcm)
Gọi 3 số tự nhiên liên tiếp là: a; a + 1; a + 2
+ Nếu a = 3k thì a chia hết cho 3, trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 (đpcm)
+ Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3, trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 (đpcm)
+ Nếu a = 3k + 2 thì a + 1 = 3k + 3 = 3.(k + 1) chia hết cho 3, trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 (đpcm)
Như vậy, trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Phần còn lại lm tương tự nhé!
Gọi số tự nhiên đó là A.
Ta có A chia 4 dư 2 => A = 4k + 2 (k là số tự nhiên)
Do đó A = 2 x 2k + 2 = 2 x (2k +1) chia hết cho 2.
Vậy số dư của A cho 2 là 0.
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
Gọi số cần tìm là a ( a \(\in\) N* )
Theo đề ra , ta có : a chia cho 4,5,6 dư 1
=> a - 1 \(⋮\)4,5,6 => a - 1 \(\in\) BC( 4,5,6 )
4 = 22
5 = 5
6 = 2 . 3
BCNN( 4,5,6 ) = 22 . 3 . 5 = 60
BC( 4,5,6 ) = { 0;60;120;180;240;300;360;420;... }
Mà : a < 400 => a - 1 < 399
=> a - 1 \(\in\) { 0;60;120;180;240;300;360 }
Mà : a \(⋮\)7 => a - 1 = 300
=> a = 300 + 1 = 301
Vậy số cần tìm là 301