Giúp đỡ tôi bài này các bạn ơi . Tìm GTLN -GTNN của A = \(\frac{x^2+1}{x^2-x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{3}{5}>\dfrac{2}{5}\\\dfrac{1}{2}x-\dfrac{3}{5}< -\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x>1\\\dfrac{1}{2}x< \dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< \dfrac{2}{5}\end{matrix}\right.\)
\(6,\\ a,\\ 1,A=x^2+3x+7=\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{3}{2}\)
\(2,B=\left(x-2\right)\left(x-5\right)\left(x^2-7x+10\right)=\left(x-2\right)^2\left(x-5\right)^2\ge0\)
Dấu \("="\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
\(b,\\ 1,A=11-10x-x^2=-\left(x+5\right)^2+36\le36\)
Dấu \("="\Leftrightarrow x=-5\)
Cách 1.
Nhận xét : \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) . Do vậy A luôn xác định. Ta có :
\(A=\frac{x^2+1}{x^2-x+1}\Leftrightarrow A\left(x^2-x+1\right)=x^2+1\Leftrightarrow x^2\left(A-1\right)-x.A+\left(A-1\right)=0\)
Tìm GTLN-GTNN tức là tồn tại giá trị x thỏa mãn minA và maxA.
Vậy thì điều kiện cần là phương trình trên có nghiệm, tức là :
\(\Delta=A^2-4.\left(A-1\right)\left(A-1\right)=A^2-4\left(A^2-2A+1\right)=-3A^2+8A-4\ge0\)
Giải bđt trên được \(\frac{2}{3}\le A\le2\)
Vậy : min A = 2/3 khi x = -1
max A = 2 khi x = 1
Cách 2.
Theo nhận xét ở cách 1 thì ta có A luôn xác định.
Ta có : \(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)+\left(x^2+2x+1\right)}{3\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{2}{3}\ge\frac{2}{3}\)
Đẳng thức xảy ra khi x = -1
Vậy minA = 2/3 khi x = -1
\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=-\frac{\left(x-1\right)^2}{x^2-x+1}+2\le2\)
Đẳng thức xảy ra khi x = 1
Vậy max A = 2 khi x = 1