K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

Hình học lớp 8

a) Gọi E' là điểm đối xứng với E qua A.

Khi đó ta thấy ngay MA là đường trung bình của tam giác EE'H

Vậy nên MA // HE'.

Kéo dài MA, cắt BC tại K.

Ta thấy rằng \(\widehat{BAC}=\widehat{E'AH}\) (Cùng phụ với góc CAE')

Vậy nên ta có ngay \(\Delta ABC=\Delta AE'H\left(c-g-c\right)\Rightarrow\widehat{AE'H}=\widehat{ABC}\)

Lại có \(\widehat{AE'H}=\widehat{E'AK}\) (Hai góc so le trong)

\(\widehat{E'AK}=\widehat{MAE}\) (Hai góc đổi đỉnh)

Vậy nên \(\widehat{ABC}=\widehat{MAE}\)

Suy ra \(\widehat{ABK}+\widehat{BAK}=\widehat{MAE}+\widehat{BAK}=180^o-\widehat{EAB}=90^o\)

Xét tam giác ABK có \(\widehat{ABK}+\widehat{BAK}=90^o\) nên \(\widehat{AKB}=90^o\Rightarrow MA\perp BC\left(đpcm\right)\)

b) +) Ta có \(MA\perp BC;ON\perp BC\Rightarrow\) MA // ON.

Chứng minh tương tự ta cũng có \(NA\perp EH\)

Khi OE = OH thì tam giác OEH cân tại O, suy ra OM là trung tuyến đồng thời đường cao. Vậy \(OM\perp EH\Rightarrow\) OM // NA

Vậy thì AMON là hình bình hành.

+) Ta có AMON là hình bình hành nên AM = ON.

Lại có \(AM=\dfrac{HE'}{2}=\dfrac{BC}{2}=BN=NC\)

Nên \(NO=NB=NC\Rightarrow\widehat{BOC}=90^o\)

Vậy thì \(\widehat{B_1}=\widehat{C_1}=45^o\)

Ta có \(\widehat{BAC}+\widehat{B_2}+\widehat{B_1}+\widehat{C_2}+\widehat{C_1}=180^o\)

Mà do OA = OB = OC nên \(\widehat{B_2}=\widehat{BAO};\widehat{C_2}=\widehat{OAC}\Rightarrow\widehat{B_2}+\widehat{C_2}=\widehat{BAC}\)

Suy ra \(2\widehat{BAC}=90^o\Rightarrow\widehat{BAC}=45^o\)

14 tháng 12 2020

Cho tam giác ABC, điểm I nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh đối diện theo thứ tự ở D, E, F. Đường thẳng đi qua I và song song với BC cắt DE, DF theo thứ tự ở N, M. Chứng minh IN = IM