K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2016

Đặt \(\begin{cases}x^2=a\left(a\ge0\right)\\y^2=b\left(b\ge0\right)\end{cases}\), khi đó ta có:

\(\frac{a+b}{10}=\frac{a-2b}{7}\)\(a^2b^2=81\). Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\left(1\right)\)

\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a}{9}=b\Rightarrow a=9b\) thay vào \(a^2b^2=81\) ta có:

\(\left(9b\right)^2\cdot b^2=81\Rightarrow81\cdot b^4=81\Rightarrow b^4=1\Rightarrow b=1\) (b\(\ge\)0)

Suy ra \(a=9b=9\cdot1=9\)

\(\Rightarrow\begin{cases}x^2=9\\y^2=1\end{cases}\)\(\Rightarrow\begin{cases}x=\pm3\\y=\pm1\end{cases}\)

 

10 tháng 12 2017

co ai biet lam ko

15 tháng 2 2023

Theo đề ra, ta có:

\(\dfrac{x}{9}=\dfrac{y}{10}\Rightarrow\dfrac{x^2}{9^2}=\dfrac{y^2}{10^2}\Rightarrow\dfrac{x^2}{81}=\dfrac{y^2}{100}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{81}=\dfrac{y^2}{100}=\dfrac{x^2+y^2}{81+100}=\dfrac{181}{181}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{81}=1\Rightarrow x=\pm9\\\dfrac{y^2}{100}=1\Rightarrow y=\pm10\end{matrix}\right.\)

16 tháng 2 2023

KL này chưa ổn: VD chia ra: TH1 : x=-9; y=-10. TH2: x=9;y=10

Chứ KL như em thì có thể có cặp nghiệm (-9;10) hoặc (9;-10) như thế không thoả BT để bài

12 tháng 1 2016

vì x và y là hai đại lượng tỷ lệ thuận nên:

\(\frac{x1}{x2}=\frac{y1}{y2}=\frac{x1+x2}{y1+y2}=\frac{-1}{-7}=\frac{1}{7}\)            (1)

từ (1) => x=\(\frac{1}{7}y^{ }\)

vậy nếu x=3 thì y = 7.3=21

 

13 tháng 12 2020

a. Trừ vế theo vế \(\left(1\right)\) cho \(\left(2\right)\) ta được \(x^2-y^2=4x-4y\)

\(\Leftrightarrow\left(x-y\right)\left(x+y-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=4-y\end{matrix}\right.\)

TH1: \(x=y\)

Phương trình \(\left(1\right)\) tương đương:

\(x^2=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2\end{matrix}\right.\)

TH2: \(x=4-y\)

Phương trình \(\left(2\right)\) tương đương:

\(y^2=4y-4\)

\(\Leftrightarrow y^2-4y+4=0\)

\(\Leftrightarrow\left(y-2\right)^2=0\)

\(\Leftrightarrow y=2\)

\(\Rightarrow x=2\)

Vậy hệ đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;0\right);\left(2;2\right)\right\}\)

b. \(\left\{{}\begin{matrix}x+y+xy=5\\x^2+y^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-2xy=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2-10+2\left(x+y\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left(x+y+5\right)\left(x+y-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy=5-\left(x+y\right)\\\left[{}\begin{matrix}x+y=-5\\x+y=3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x+y=-5\\xy=10\end{matrix}\right.\Leftrightarrow\) vô nghiệm

TH2: \(\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\end{matrix}\right.\)

Vậy ...

13 tháng 11 2018

mk ko hiểu đề . hình như bạn gõ thiếu gì đó thì phải

20 tháng 11 2022

a: x tỉ lệ nghịch với y

nên \(x_1\cdot y_1=x_2\cdot y_2\)

=>\(\dfrac{x_2}{x_1}=\dfrac{y_1}{y_2}\)

hay \(\dfrac{x_2}{6}=\dfrac{y_1}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_2}{6}=\dfrac{y_1}{3}=\dfrac{5x_2-4y_1}{5\cdot6-4\cdot3}=\dfrac{9}{30-12}=\dfrac{9}{18}=\dfrac{1}{2}\)

=>x2=3; y1=3/2

b: 

x tỉ lệ nghịch với y

nên \(x_1\cdot y_1=x_2\cdot y_2\)

=>\(\dfrac{x_2}{x_1}=\dfrac{y_1}{y_2}\)

hay \(\dfrac{x_1}{x_2}=\dfrac{y_2}{y_1}\)

=>\(\dfrac{x_1}{-2}=\dfrac{y_2}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x_1}{-2}=\dfrac{y_2}{5}=\dfrac{3x_1+7y_2}{3\cdot\left(-2\right)+7\cdot5}=\dfrac{10}{29}\)

=>x1=-20/29; y2=50/29

c: x tỉ lệ nghịch với y

nên x1/x2=y2/y1

=>x1/3=y2/7=10/10=1

=>x1=3; y2=7

28 tháng 8 2019

1 tháng 6 2016

 a) x và y là hai đại lượng tỷ lệ thuận 
nên x1/y1 = x2/y2 
suy ra x1=x2.y1/y2 = 2.(-3/4):1/7 =-21/2 

b) x và y là hai đại lượng tỷ lệ thuận 
nên x1/y1 = x2/y2 
<=> x1/x2 = y1/y2 = (y1-x1)/(y2-x2) (theo t/c của dãy tỷ số bằng nhau) 
Thay số ta có: 
x1/(-4) = y1/3=-2/(3-(-4)) 
<=> x1/(-4) = y1/3=-2/7 
suy ra: 
x1 = (-4).(-2/7)=8/7 
y1 = 3.(-2/7)=-6/7 

k nha mk trả lời đầu đó!!!