Cho tam giác đều ABC trên cạnh BC lấy điểm M, kẻ MD // AC kẻ ME // AB
a, Chứng minh ADME là hình bình hành
b, Gọi O là trung điểm của DE. Chứng minh A, O, M thẳng hàng
c, Kẻ MI vuông góc với AB, MK vuông góc với AC. Tính số đo góc IOK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. Xét tứ giác ADME có :
ME // AD (ME// AB Theo Gt)
MD// AE(MD// AC Theo Gt)
suy ra ADME là hình bình hành (theo dấu hiệu nhận biết hình bình hành )
B. Ta có ADME là hình bình hành ( chứng minh trên)
=> 2 đường chéo AMvà DE cắt nhau tại trung điểm mỗi đường
Má Olà trung điểm của DE (Gt)
=> Olà trung điểm của AM
vậy A ,O,M thẳng hàng
C. tui ko lm dc thông cảm chút xíu
hình bạn tự vẽ nhe
a, Xét tứ giác ADME có 3 góc vuông:\(MDA=DAE=MEA=90^o\)
do đó : ADME là hình chữ nhật.
b, Xét tam giác ABC có đường t.b ME (1)
lại có M là trung điểm BC và ME//DA
=> D là trung điểm của AB (2)
từ (1) và (2) suy ra:
\(ME=\dfrac{1}{2}AB\)
hay ME=DB và ME//DB
vậy tứ giác ADME là hình bình hành
c,
Xét tam giác EHD và tam giác EAD có
DE cạnh chung
AD=DH(gt)
góc HED = góc AED (gt)
do đó 2 tam giác EHD và EAD = nhau
=> HE = AE ( 2 cạnh tương ứng )(3)
Xét hình chữ nhật ADME có :
DM= AE ( 2 cạnh đối = nhau )(4)
từ (3) và (4) suy ra :
HE=DM
Xét tứ giác DEMH có :
HE =DM (cmt)
do đó : DEMH là hình thang cân ( 2 đường chéo = nhau ).
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
a) Để chứng minh ADME là hình chữ nhật, ta cần chứng minh rằng các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.
Ta có:
- M là trung điểm của BC, nên BM = MC.
- MD vuông góc với AB, nên góc AMD = 90 độ.
- ME vuông góc với AC, nên góc AME = 90 độ.
Vậy ta có BM = MC, góc AMD = góc AME = 90 độ.
Từ đó, ta có thể kết luận rằng ADME là hình chữ nhật với các cạnh đối diện bằng nhau và các góc trong bằng 90 độ.
b) Để chứng minh DBME là hình bình hành, ta cần chứng minh rằng các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 180 độ.
Ta có:
- M là trung điểm của BC, nên BM = MC.
- MD vuông góc với AB, nên góc AMD = 90 độ.
- ME vuông góc với AC, nên góc AME = 90 độ.
Vậy ta có BM = MC, góc AMD = góc AME = 90 độ.
Từ đó, ta có thể kết luận rằng DBME là hình bình hành với các cạnh đối diện bằng nhau và các góc trong bằng 180 độ.
c) Để chứng minh DEMH là hình thang cân, ta cần chứng minh rằng các cạnh đáy của nó bằng nhau và các góc đáy của nó bằng nhau.
Ta có:
- M là trung điểm của BC, nên BM = MC.
- MD vuông góc với AB, nên góc AMD = 90 độ.
- ME vuông góc với AC, nên góc AME = 90 độ.
- H là giao điểm của đường cao AH và cạnh BC, nên AH vuông góc với BC.
Vậy ta có BM = MC, góc AMD = góc AME = 90 độ và AH vuông góc với BC.
Từ đó, ta có thể kết luận rằng DEMH là hình thang cân với các cạnh đáy bằng nhau và các góc đáy bằng nhau.
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
cho mình sửa với : Bài 2: Cho hình vuông ABCD có cạnh =4cm.Trên các cạnh AB,BC,CD,DA lấy theo thứ tự các điểm E,F,G,H sao cho AE=BF=CG=DH. Tính độ dài AE sao cho tứ giác EFGH có chu vi nhỏ nhất.
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác AMBP có
D là trung điểm chung của AB và MP
MA=MB
Do đó: AMBP là hình thoi
=>ABlà phân giác của góc MAP(1)
c: Xét tứ giác AMCQ có
E là trung điểm chung của AC và MQ
MA=MC
Do đó: AMCQ là hình thoi
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*90=180 độ
=>P,A,Q thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
a) ta có : tam giác ABC vuông tại A
=> BAC = 90 độ (1)
có : MD vuông góc AB
=> MDA = 90 độ (2)
Ta có : ME vuông góc AC
=> MEA = 90 độ (3)
Từ (1)(2)(3) => ADME là hình chữ nhật
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
b: Ta có: ADME là hình bình hành
nên Hai đường chéo AM và DE cắt nhau tại trung điểm của mỗi đường
mà O là trung điểm của DE
nên O là trung điểm của AM
hay A,O,M thẳng hàng