Vật m dao động với phương trình x=Acos(\(\pi t-\dfrac{\pi}{6}\)) tại thời điểm t vật có li độ 4 (cm). Li độ tại thời điểm t+2(s) là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính vị trí của vật điều hoà tại thời điểm 1/3 giây sau khi vật có li độ x = 3cm, chúng ta cần tính giá trị của x tại thời điểm đó.
Phương trình vật dao động điều hoà đã cho là: x = 6cos(2πt - π/6) (cm)
Để tìm thời điểm 1/3s tiếp theo, ta thay t = 1/3 vào phương trình trên:
x = 6cos(2π(1/3) - π/6) = 6cos(2π/3 - π/6) = 6cos(π/2) = 6 * 0 = 0 (cm)
Vậy, tại thời điểm 1/3s tiếp theo, vật sẽ ở li độ x = 0cm.
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{4\pi}=0,5s\)
Ta có: \(x=2,5\sqrt{2}=\dfrac{A\sqrt{2}}{2}\) và đang có xu hướng giảm.
Lúc này vật ở thời điểm: \(t_1=\dfrac{T}{8}\)
Tại thời điểm: \(t=\dfrac{7}{48}s=\dfrac{7T}{14}=\dfrac{T}{8}+\dfrac{T}{6}\)
Dựa vào vòng tròn lượng giác \(\Rightarrow x=2,5cm\)
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=0,5s\)
a) t = 0,124s = T/4
Biểu diễn dao động bằng véc tơ quay, ta có:
Ban đầu, vị trí của vật ứng với véc tơ quay tại M, sau T/4, vị trí đó đến điểm N.
\(\Rightarrow x = 8\cos 30^0=4\sqrt 3(cm)\)
b) Hoàn toàn tương tự, ta tìm được li độ của vật sau 0,3125s là \(x=0cm\)
Theo mình là câu D bạn nhé vì từ pt suy ra được tần số gốc là pi:3 mà T=2pi:tần số gốc => T=6s Tại t1 có x=2cm Vậy t1+6=t1+T nên sau khi đi 1 chu kì vẫn quay lại vị trí x=2cm
Phương trình dạo động là: \(x=4cos\left(2\pi t+\dfrac{\pi}{3}\right)cm\)
Chu kì dao động là: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{2\pi}=1\left(s\right)\Rightarrow0,25=\dfrac{T}{4}\)
Tại thời điểm t1, vật có li độ đang giảm và có giá trị 2cm
\(\Rightarrow\Delta\varphi=\dfrac{\pi}{3}\)
Tại thời điểm t2 = t1 + 0,25, vật quay một góc \(\dfrac{\pi}{2}\) so với thời điểm t1.
\(\Rightarrow x_2=-\dfrac{A\sqrt{3}}{2}=-\dfrac{4\sqrt{3}}{2}=-2\sqrt{3}\left(cm\right)\)
Chọn A.
Ta có:
- Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{4\pi}=0,5s\)
\(\Delta t=t_1-t_2=\dfrac{7}{48}s\)
Góc vật quét được khi từ thời điểm \(t_1\) đến \(t_2\) : \(\Delta\varphi=\omega\Delta t=4\pi.\dfrac{7}{48}=105^o\)
Tại thời điểm \(t_1\) vật đang có li độ: \(x=5\left(cm\right)=\dfrac{A}{2}\)
+ Với \(t_1\left(1\right)\) ta có, li độ của vật tại thời điểm \(t_1\left(2\right)\)
\(x_1=A.sin\left(15^o\right)=2,59cm\)
+ Với \(t_2\left(1\right)\) ta có, li độ của vật tại thời điểm \(t_2\left(2\right)\)
\(x_2=A.cos\left(15^o\right)=9,66\left(cm\right)\)\(\Rightarrow A\)
Trong 2s, vật quay được góc: \(\varphi=\omega t=2\pi\left(rad\right)\)
Có nghĩa là vật sẽ quay một vòng rồi về chính vị trí ban đầu. Tức là ban đầu vật có li độ x=4, tại thời điểm t+2(s), vật cũng có li độ x=4