tính:
(1-1 phần 99) . (1-1 phần 100) . đến . (1-1 phần 2006)
chú ý : dấu chấm là dấu nhân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+.......\frac{1}{13x15}=\frac{1}{2}x\frac{2}{1x3}+\frac{2}{3x5}.......+\frac{2}{13x15}\)
\(A=\frac{1}{2}x\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}\right)\)
Còn lại em nhân giống ở trên nhé
Đặt A = 1/15 + 1/35 + ... + 1/3135
A = 1/3.5 + 1/5.7 + ... + 1/55.57
2A = 2/3.5 + 2/5.7 + ... + 2/55.57
2A = 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/55 - 1/57
2A = 1/3 - 1/57 = 6/19
A = 3/19
Bài làm:
\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99.100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)
\(=\frac{1}{99.100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{98-97}{97.98}+\frac{99-98}{98.99}\right)\)
\(=\frac{1}{99.100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)
\(=\frac{1}{99.100}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{99.100}-\frac{98}{99}\)
\(=\frac{1-98.100}{99.100}=\frac{1-9800}{9900}=-\frac{9799}{9900}\)
Học tốt!!!!
\(\left(\frac{1}{100.99}\right)-\left(\frac{1}{99.98}\right)-\left(\frac{1}{98.97}\right)-...-\left(\frac{1}{3.2}\right)-\left(\frac{1}{2.1}\right)\)
\(=\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{2.1}\right)\)
\(=\frac{1}{99}-\frac{1}{100}-\left(\frac{1}{98}-\frac{1}{99}+\frac{1}{97}-\frac{1}{98}+...+1+\frac{1}{2}\right)\)
\(=\frac{1}{99}-\frac{1}{100}-\left(1-\frac{1}{99}\right)\)
\(=\frac{1}{99}-\frac{1}{100}-1+\frac{1}{99}\)
\(=\frac{2}{99}-\frac{101}{100}\)
\(1\frac{1}{3}\cdot1\frac{1}{8}\cdot1\frac{1}{15}\cdot1\frac{1}{24}\cdot...\cdot1\frac{1}{99}\)
\(=\frac{4}{3}\cdot\frac{9}{8}\cdot\frac{16}{15}\cdot\frac{25}{24}\cdot...\cdot\frac{100}{99}\)
\(=\frac{2.2\cdot3.3\cdot4.4\cdot5.5\cdot...\cdot10.10}{1.3\cdot2.4\cdot3.5\cdot4.6\cdot...\cdot9.11}\)
\(=\frac{2.10}{1.11}=\frac{20}{11}\)
"." = nhân
a) \(\frac{1}{3}+\frac{5}{6}:\left(x-2\frac{1}{5}\right)=\frac{3}{4}\)
=> \(\frac{1}{3}+\frac{5}{6}:\left(x-\frac{11}{5}\right)=\frac{3}{4}\)
=> \(\frac{5}{6}:\left(x-\frac{11}{5}\right)=\frac{3}{4}-\frac{1}{3}\)
=> \(\frac{5}{6}:\left(x-\frac{11}{5}\right)=\frac{5}{12}\)
=> \(x-\frac{11}{5}=\frac{5}{6}:\frac{5}{12}\)
=> \(x-\frac{11}{5}=2\)
=> \(x=2+\frac{11}{5}\)
=> \(x=\frac{21}{5}\)