Một người đi xe đạp đi nửa quãng đường đầu với vận tốc V1= 12km/h, nửa quãng đường còn lại đi đến quãng đường V2.Biet61van65 tốc trên cả quãng đường là V=8 km/h. Tính V2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi nửa quãng đường là S
\(t_1\) là thời gian đi hết nửa quãng đường đầu
\(t_1=\dfrac{s}{12}\)
\(t_2\) là thời gian đi hết nửa quãng đường sau
\(t_2=\dfrac{S}{v_2}\)
\(v_{tb}=\dfrac{S+S}{t_1+t_2}=\dfrac{2S}{\dfrac{S}{12}+\dfrac{S}{v_2}}=8\)
\(\Leftrightarrow\dfrac{2S}{\dfrac{S\left(12+v_2\right)}{12v_2}}=8\Leftrightarrow\dfrac{24v_2}{12+v_2}=8\Rightarrow v_2=6\) km/h
Gọi s là chiều dài nửa quãng đường mà người đi xe đạp phải đi.
Như vậy, thời gian đi hết nửa quãng đường đầu s1 = s với vận tốc v1 là:
Thời gian đi hết nửa quãng đường còn lại s2 = s với vận tốc v2 là:
Vậy tổng thời gian đi hết cả quãng đường là:
Vận tốc trung bình của người đi xe đạp trên cả quãng đường là:
Giải
Gọi s là chiều dài nửa quãng đường
Thời gian đi hết nửa quãng đường đầu với vận tốc v1 là t1=s/v1 (1)
Thời gian đi hết nửa quãng đường còn lại với vận tốc v2 là t2=s/v2 (2)
Vận tốc trung bình của người đi xe đạp trên quãng đường là vtb = 2s/t1+ t2 (3)
Kết hợp (1); (2); (3) có: 1/v1 + 1/v2 = 2/vtb
Thay số vtb = 8km/h ; v1 = 12km/h
Vận tốc trung bình của người đi xe ở nửa quãng đường sau là v2 = 6km/h.
Gọi s là chiều dài nửa quãng đường mà người đi xe đạp phải đi.
Như vậy, thời gian đi hết nửa quãng đường đầu s1 = s với vận tốc v1 là:
Thời gian đi hết nửa quãng đường còn lại s2 = s với vận tốc v2 là:
Vậy tổng thời gian đi hết cả quãng đường là:
Vận tốc trung bình của người đi xe đạp trên cả quãng đường là:
Thời gian đi quãng đường đầu và quãng đường sau là:
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{S}{2v_1}=\dfrac{S}{24}\left(h\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{S}{2v_2}=\dfrac{S}{40}\left(h\right)\end{matrix}\right.\)
Vận tốc trung bình là: \(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=\dfrac{S}{S\left(\dfrac{1}{24}+\dfrac{1}{40}\right)}=15\left(\dfrac{km}{h}\right)\)
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{2}:12+\dfrac{S}{2}:18}=\dfrac{S}{\dfrac{S}{48}+\dfrac{S}{36}}=\dfrac{S}{\dfrac{7S}{144}}\approx20,57\)(km/h)
\(\left\{{}\begin{matrix}t_1=\dfrac{S_1}{v_1}=\dfrac{S_{tổng}}{2.12}=\dfrac{S_{tổng}}{24}\left(h\right)\\t_2=\dfrac{S_2}{v_2}=\dfrac{S_{tổng}}{2.18}=\dfrac{S_{tổng}}{36}\left(h\right)\end{matrix}\right.\)
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S_{tổng}}{\dfrac{S_{tổng}}{24}+\dfrac{S_{tổng}}{36}}=\dfrac{S_{tổng}}{S_{tổng}\left(\dfrac{1}{24}+\dfrac{1}{36}\right)}=14,4\left(\dfrac{km}{h}\right)\)
nửa quãng đường = \(\dfrac{1}{2}\left(km\right)=0,2\left(km\right)\)
Thời gian của người đi xe đạp trong một nửa quãng đường đầu
\(t=s:v=0,2:12=2,4\left(h\right)\)
Thời gian của người đi xe đạp trong 1 nửa quãng đường sau
\(t=s:v=0,2:18=3,6\left(h\right)\)
Vận tốc trung bình của người đó trên cả quãng đường là
\(v_{tb}=\dfrac{s+s'}{t+t'}=\dfrac{0,2+0,2}{3,6+2,4}=\dfrac{0,4}{6}=0,066\left(kmh\right)\)
Thời gian đi nửa quãng đường đầu:
\(t_1=\dfrac{S_1}{v_1}=\dfrac{\dfrac{1}{2}S}{12}=\dfrac{S}{24}h\)
Thời gian đi nửa quãng đường sau:
\(t_2=\dfrac{S_2}{v_2}=\dfrac{\dfrac{1}{2}S}{20}=\dfrac{S}{40}h\)
Vận tốc trung bình:
\(v_{tb}=\dfrac{S_1+S_2}{t_1+t_2}=\dfrac{S}{\dfrac{S}{24}+\dfrac{S}{40}}=15\)km/h
Thời gian đi quãng đường đầu và quãng đường sau là:
⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩t1=S1v1=S2v1=S24(h)t2=S2v2=S2v2=S40(h){t1=S1v1=S2v1=S24(h)t2=S2v2=S2v2=S40(h)
Vận tốc trung bình là: vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)vtb=S1+S2t1+t2=SS24+S40=SS(124+140)=15(kmh)
Vận tốc trung bình trên cả quãng đường :
vtb = \(\frac{s}{\frac{s}{2\cdot v_1}+\frac{s}{2\cdot v_2}}\) = \(\frac{2\cdot v_1\cdot v_2}{v_1+v_2}\)
mà vtb = 8 km/h, v1 = 12 km/h.
Suy ra v2 = 6 km/h.
Ta có :
\(V_{tb}=\dfrac{S+S}{t_1+t_2}=\dfrac{2S}{t_1+t_2}=\dfrac{2S}{\dfrac{S}{V_1}+\dfrac{S}{V_2}}=\dfrac{2}{\dfrac{1}{V_1}+\dfrac{1}{V_2}}\left(1\right)\)
Thay \(V_1=12\)km/h
\(V_{tb}=8\)km/h
\(\Rightarrow\) Thay vào \(\left(1\right)\) ta được:
\(8=\dfrac{2}{\dfrac{1}{12}+\dfrac{1}{V_2}}\)
\(\Leftrightarrow\dfrac{1}{12}+\dfrac{1}{V_2}=\dfrac{2}{8}\)
\(\Leftrightarrow\dfrac{1}{V_2}=\dfrac{1}{4}-\dfrac{1}{12}=\dfrac{1}{6}\)
\(\Leftrightarrow V_2=6\)km/h
Vậy \(V_2=6\)(km/h)