K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

A,B: một biến.

A: 3 hạng tử; B: 4 hạng tử.

A: Bậc 2; B: Bậc 5.

4 tháng 4 2020

1) \(f\left(x\right)=ax^{2\:}+bx+6\)có bậc 1 => a=0

Khi đó \(f\left(x\right)=bx+6;f\left(1\right)=3\)

\(\Rightarrow b\cdot1+6=3\Rightarrow b=-3\)

2) \(g\left(x\right)=\left(a-1\right)\cdot x^2+2x+b\)

g(x) có bậc 1 => a-1=0 => a=1. Khi đó

\(g\left(x\right)=2x+b\)lại có g(2)=1

\(\Rightarrow2\cdot2+b=1\Rightarrow b=-3\)

3) \(h\left(x\right)=5x^3-7x^2+8x-b-ax^{3\: }=x^3\left(5-a\right)-7x^2+8x-b\)

h(x) có bậc 2 => 5-a=0 => a=5

Khi đó h(x)=-7x2+8x-b

h(-1)=3 => -7(-1)2+8.(-1)+b=3

<=> -7-8+b=3 => b=18

4) r(x)=(a-1)x3+5x3-4x2+bx-1=(a-1+5)x3-4x2+bx-1=(a+4)x3-4x2+bx-1

r(x) bậc 2 => a+4=0 => a=-4

r(2)=5 => (-4).22+b.2-1=5

<=> -16+2b-1=5

<=> 2b=22 => b=11

a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)

b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)

12 tháng 6 2017

a, \(A=-4x^5y^3+x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)

\(=2x^2y^3z^2-2y^4\)

Bậc của đa thức A là 7

Vậy...

b, Ta có: \(B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=A\)

\(\Rightarrow B-2x^2y^3z^2+\dfrac{2}{3}y^4-\dfrac{1}{5}x^4y^3=2x^2y^3z^2-2y^4\)

\(\Rightarrow B=2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3\)

\(=4x^2y^3z^2-\dfrac{8}{3}y^4+\dfrac{1}{5}x^4y^3\)

Vậy...

a) \(8x^3-18x^2+x+6\)

\(=8x^3-16x^2-2x^2+4x-3x+6\)

\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(8x^2-2x-3\right)\)

\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)

\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)

\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)

=> g(x) có 3 nghiệm là

x-2=0 <=> x=2

2x+1=0 <=> x=-1/2

4x-3=0 <=> x=3/4

vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}

b) tự làm đi (mk ko bt làm)

8 tháng 6 2020

a/ \(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6+2y^7-2\)

\(=3x^6y+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)-\left(4y^7-2y^7\right)+\left(11-2\right)-5x^6\)

\(=3x^6y-\frac{7}{2}x^4y^3-2y^7+8-5x^6\)

→ Bậc: 7

b/ Thay x = 1; y = -1 vào M ta có:

\(M=3.1^6\left(-1\right)-\frac{7}{2}.1^4.\left(-1\right)^3-2.\left(-1\right)^7+8-5.1^6\)

\(=-3+\frac{7}{2}+2+8-5\)

\(=\frac{11}{2}\)

2 tháng 10 2016

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(25-x^2+4xy-4y^2=25-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)

c) \(x^2-4x+3=x^2-x-3x+3=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)

d) \(y^2\left(x-1\right)-7y^3+7xy^3\)

\(=y^2\left(x-1-7y+7xy\right)\)

\(=y^2\left[\left(x-1\right)-7y\left(1-x\right)\right]=y^2\left(x-1\right)\left(1+7y\right)\)

2 tháng 10 2016

a)

 \(xy+y^2-x-y\\ =\left(xy-x\right)+\left(y^2-y\right)\\ =x\left(y-1\right)+y\left(y-1\right)\\ =\left(y-1\right)\left(x+y\right)\)

 

 

8 tháng 6 2020

\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)

\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)

\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)

Xét bậc của từng hạng tử

-2x6y có bậc là 7

-7/2x4y3 có bậc là 7

-2y7 có bậc là 7 

=> Bậc của M = 7

Thay x = 1 , y = -1 vào M ta được : 

\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)

\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)

\(M=2+\frac{7}{2}+2+9\)

\(M=\frac{33}{2}\)

Vậy giá trị của M = 33/2 khi x = 1 , y = -1

8 tháng 6 2020

Ta có M = (3x6y - 5x6y) + (1/2.x4y3 - 4.x4.y3) - (4y7 + 2y7) + (11 - 2)

               = -2x6y - 3,5x4y3 - 2y7 + 9

Bậc của đa thức M là 7 

b) M(1 ; -1) = -2.16.(-1) - 3,5.14.(-1)3 - 2.(-1)7 + 9

                   = 2 + 3,5 + 2 + 9 = 16,5