K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\\ =>\dfrac{x}{y+z}=1-\dfrac{y}{z+x}-\dfrac{z}{x+y}\\ =>\dfrac{x}{y+z}=\dfrac{(z+x)(x+y)-y(x+y)-z(z+x)}{(z+x)(x+y)}\\ =>\dfrac{x}{y+z}=\dfrac{xz+yz+x^{2}+xy-xy-y^{2}-z^{2}-xz}{(z+x)(x+y)}\\ =>\dfrac{x}{y+z}=\dfrac{x^{2}-y^{2}-z^{2}+yz}{(z+x)(x+y)}\\ =>\dfrac{x^{2}}{y+z}=\dfrac{x^{3}-xy^{2}-xz^{2}+xyz}{(z+x)(x+y)} \ \ \ \ (1)\\ =>\dfrac{y^{2}}{z+x}=\dfrac{y^{3}-yz^{2}-yx^{2}+xyz}{(x+y)(y+z)} \ \ \ \ (2)\\ =>\dfrac{z^{2}}{x+y}=\dfrac{z^{3}-zx^{2}-zy^{2}+xyz}{(y+z)(z+x)} \ \ \ \ (3)\)

Cộng vế vs vế của (1),(2) và (3) ta đc \(\dfrac{x^{2}}{y+z}+\dfrac{y^{2}}{z+x}+\dfrac{z^{2}}{x+y}=0\)

29 tháng 9 2015

x(x+y+z) + y(x+y+z) + z(x+y+z) = 2 + 25 - 2 = 25 

=> ( x+ y+ z )(x+y+z) = 25 

=> x + y+ z = 5 hoặc x + y +z = -5 

(+) x + y +z = 5 => x.5 = 2 => x = 2/5 

                        => y.5=5 => y = 1 

                        => z.5 = -2 => z = -2/5 

(+) x+ y+ z = -5 => -5x = 2 => x= -2/5 (loại x > 0)

Vậy x = 2/5 ; y = 1 ; z = -2/5 

20 tháng 4 2021

ngu ing lích :)

Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{6z}{30}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{3y}{9}=\frac{6z}{30}=\frac{z+3y+6z}{2+9+30}=\frac{82}{41}=2\)

=> \(\hept{\begin{cases}\frac{x}{2}=2\\\frac{3y}{9}=2\\\frac{6z}{30}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\\z=10\end{cases}}\)=> M = x + y + z = 4 + 6 + 10 = 20

Vậy M = 20

6 tháng 7 2017

Sửa đề:

\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}\)

Dựa vào t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}=\dfrac{x+y+z}{x+y+x+z+z+y+\left(1+1-2\right)}=\dfrac{x+y+z}{x+x+y+y+z+z}=\dfrac{1\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{1}{2}\)\(x+y+z=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)

\(2y=x+z+1\)

\(3y=\dfrac{1}{2}+1\)

\(y=\dfrac{1}{2}\)

6 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)

\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)

\(\Rightarrow2y=x+z+1\)

\(\Rightarrow3y=x+y+z+1\)

\(\Rightarrow3y=\dfrac{1}{2}+1\)

\(\Rightarrow y=\dfrac{1}{2}\)

Vậy...

25 tháng 10 2018

Nesbit:v dài

25 tháng 10 2018

Nham ko phai Nesbit, Cauchy-Schwarz ra luon

1 tháng 12 2016

Chào, kb với tớ nhé

1 tháng 12 2016

uồi khó thế mình không giải đc

3 tháng 6 2018

L8 đã học hằng đẳng thức chưa e nhỉ?

19 tháng 6 2018

hình như rồi

6 tháng 7 2023

Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)

Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)

\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)

\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\)

\(=3\)

Vậy P=3