K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x-\sqrt{x}-2=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)

17 tháng 10 2021

\(\sqrt{x^2y^3}+y\sqrt{x^4y}-xy\sqrt{y}\)

\(=xy\sqrt{y}+x^2y\sqrt{y}-xy\sqrt{y}\)

\(=x^2y\sqrt{y}\)

15 tháng 2 2022

\(Đk:\) \(x\ne1,x\ne2,x\ne3\)

\(\Rightarrow\dfrac{x+4}{\left(x-2\right)\left(x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(x-1\right)}=\dfrac{2x+5}{\left(x-3\right)\left(x-1\right)}\)

\(\Rightarrow\dfrac{\left(x+4\right)\cdot\left(x-3\right)+\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)\left(x-3\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(x-3\right)\left(x-1\right)\left(x-2\right)}\)

\(\Rightarrow x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)

\(\Rightarrow0x-14=x-10\)

\(\Rightarrow x=-4\left(tmđk\right)\)

14 tháng 3 2022

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2

26 tháng 6 2019

\(a,\sqrt{\frac{5.\left(38^2-17^2\right)}{8.\left(47^2-19^2\right)}}\)

\(=\sqrt{\frac{5.\left(38-17\right)\left(38+17\right)}{8.\left(47-19\right)\left(47+19\right)}}\)

\(=\sqrt{\frac{5.21.55}{8.28.66}}\)

\(=\sqrt{\frac{5775}{14784}}=\frac{5\sqrt{231}}{2\sqrt{4370}}\)

26 tháng 6 2019

.bn tính lại \(\sqrt{14784}\)đi sao lạ vậy

15 tháng 7 2016

Điều kiện xác định : \(x\ge0;y\ge0;\sqrt{x}-\sqrt{y}\ne-3\)

Ta có : \(\frac{x-y+3\sqrt{x}+3\sqrt{y}}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+3\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+3\right)}{\sqrt{x}-\sqrt{y}+3}=\sqrt{x}+\sqrt{y}\)

30 tháng 10 2021

\(a,M=x^2-64+x^3+64=x^3+x^2\\ b,x=-4\Leftrightarrow M=-64+16=-48\\ c,M=0\Leftrightarrow x^2\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:
Để pt có 2 nghiê pb thì:

$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)

Khi đó:
\(x_1^2-2x_2+x_1x_2=-12\)

\(\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12\)

\(\Leftrightarrow x_1=-2\Leftrightarrow x_2=2-x_1=4\)

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)