K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

Hai góc NOP và MOP kề bù nên N O P ^ + M O P ^ = 180 ° mà   N O P ^ = 2 3 M O P ^ nên N O P ^ = 180 ° .2 2 + 3 = 72 ° ; M O P ^ = 180 ° − 72 ° = 108 ° .

Suy ra M O Q ^ = N O P ^ = 72 ° (hai góc đối đỉnh); N O Q ^ = M O P ^ = 108 °  (hai góc đối đỉnh)

24 tháng 11 2023

Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu

Cách 1: 

Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)

=>\(\widehat{FON}+250^0=360^0\)

=>\(\widehat{FON}=110^0\)

\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)

mà \(\widehat{FON}=110^0\)

nên \(\widehat{EOM}=110^0\)

\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)

=>\(\widehat{EON}+110^0=180^0\)

=>\(\widehat{EON}=70^0\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)

\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)

=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)

Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)

nên từ (1),(2) ta sẽ có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)

mà \(\widehat{EOM}=110^0\)

nên \(\widehat{FON}=110^0\)

19 tháng 6 2021

A O C D B

TH1: \(\widehat{AOC}+\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOC}=\widehat{BOD}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOC}+\widehat{AOD}=230o\)

Mà \(\widehat{AOC}+\widehat{AOD}=180o\) (2 góc kề bù)

=> \(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=50o\\\widehat{AOD}=\widehat{BOC}=130o\end{matrix}\right.\)

TH2: \(\widehat{AOD}+\widehat{BOD}+\widehat{BOC}=230o\)

Mà \(\widehat{AOD}=\widehat{BOC}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOD}+\widehat{BOD}=180o\)

=> \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOC}=50o\\\widehat{BOD}=\widehat{AOC}=130o\end{matrix}\right.\)

vô lí do \(\widehat{AOC}>\widehat{BOC}\)

Tổng số đo của bốn góc là 360 độ