Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, N là điểm đối xứng với M qua I.
a. Chứng minh N đối xứng với M qua AC.
b. Chứng minh tứ giác ANCM là hình thoi
c. Tam giác vuông ABC có điều kiện gì thì hình thoi ANCM là hình vuông.
Giúp mình.Mình cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=20cm
AM=10cm
b: Xét tứ giác AMCE có
N là trung điểm của AC
N là trung ddierm của ME
Do đó: AMCE là hình bình hành
mà MA=MC
nên AMCE là hình thoi
a: Xét tứ giác AIME có
\(\widehat{AIM}=\widehat{AEM}=\widehat{EAI}=90^0\)
Do đó: AIME là hình chữ nhật
b: Xét tứ giác ANCM có
I là trung điểm của AC
I là trung điểm của NM
Do đó: ANCM là hình bình hành
mà MA=MC
nên ANCM là hình thoi
c: Để AIME là hình vuông thì AI=AE
hay AB=AC
a: Xét tứ giác ANCM có
I là trug điểm chung của AC và NM
góc AMC=90 độ
Do đó: ANCM là hình chữ nhật
b: Sửa đề; AM=CN
Vì ANCM là hình chữ nhật
nên AM=CN
Hình tự vẽ ạ
a)
Ta có:
Tam giác ABC cân tại A (gt)
Đường trung tuyến AM (gt)
=> AM vừa là đường cao vừa là đường trung tuyến vừa là đường phân giác trong tam giác ABC ( tính chất đường trung tuyến trong tam giác cân )
MA là đường cao(cmt)=> AM vuông góc BC
Tứ giác AMCK có:
I là trung điểm của AC (gt)
I là trung điểm của MK ( K đối xứng M qua I )
=> I là trung điểm của 2 đường chéo AC và MK
=> Tứ giác AMCK là Hình bình hành
Hình bình hành AMCK có:
Góc AMC vuông (AM vuông góc BC )
=> Hình bình hành AMCK là hình chữ nhật
b)
Vì : Hình bình hành AMCK là hình chữ nhật ⇒ AK // MC ( tính chất hình chữ nhật )
Δ ABC có:
M là trung điểm của BC ( AM là đường trung tuyến )
I là trung điểm của AC (gt)
⇒IM Là đường trung bình của ΔABC
⇒IM // AB (tính chất đường trung bình )
Tứ giác AKMB có:
MK // AB ( IM // AB )
AK // BM ( AK // MC )
⇒ Tứ giác AKMB là Hình Bình Hành
c)
Theo đề ra ta có:
AM là đường trung tuyến
⇒ M là trung điểm của BC
⇒ \(BM=CM=\dfrac{1}{2}BC\)
Mà : BC = 8 cm
⇒ \(BM=CM=\dfrac{1}{2}BC=\dfrac{1}{2}8=4cm\)
Áp dụng định lí Pi ta go vào \(\Delta ACM\) ta có:
\(AC^2=AM^2+CM^2\)
\(\Rightarrow AM^2=AC^2-CM^2=5^2-4^2=9\)
\(\Rightarrow AM=3cm\)
Diện tích tứ giác AMCK là :
\(S_{AMCK}=AM.CM\)
\(\Rightarrow S_{AMCK}=3.4=12cm^2\)
Vậy diện tích tứ giác AMCK là 12 cm vuông
c)
Giả sử tam giác ABC vuông cân
=> Góc A = 90 độ; AB = AC ( tính chất tam giác vuông cân )
AM là đường trung tuyến (gt)
=> AM là đường trung tuyến và là đường phân giác trong tam giác ABC
Tam giác ABC có:
AM Là đường trung tuyến ứng với cạnh huyền BC
=> AM = 1/2BC ( tính chất đường trung tuyến ứng với cạnh huyền ) (1)
Mà :
M là trung điểm của BC => BM = CM =1/2BC (2)
từ 1 và 2 => AM = CM = 1/2 BC
Tứ giác AMCK có:
I là trung điểm của AC (gt)
I là trung điểm của MK ( K đối xứng M qua I )
AM = CM (cmt)
=> Tứ giác AMCK là Hình Vuông
Vậy để tứ giác AMCK là hình vuông thì điều kiện cần có của tam giác ABC là tam giác ABC vuông cân
Ta có: N đối xứng M qua O \(\Rightarrow\) O là trung điểm của MN
Ta có: AM là đường trung tuyến \(\Rightarrow\) M là trung điểm của AB \(\Rightarrow\) MC = MB = \(\dfrac{BC}{2}\)
Xét \(\Delta\) ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
\(\Rightarrow\) AM = \(\dfrac{BC}{2}\)
Mà MC = \(\dfrac{BC}{2}\)
\(\Rightarrow\) AM = MC
Xét tứ giác AMCN có:
O là trung điểm của AC
O là trung điểm của MN
AC \(\cap\) MN = {O}
\(\Rightarrow\) Tứ giác AMCN là hình bình hành
Mà AM = MC
\(\Rightarrow\) Tứ giác AMCN là hình bình hành
b: Xét tứ giác ADBK có
I là trung điểm của AB
I là trung điểm của DK
Do đó: ADBK là hình bình hành
a: Xét tứ giác ANME có
\(\widehat{ANM}=\widehat{AEM}=\widehat{EAN}=90^0\)
Do đó: ANME là hình chữ nhật
Suy ra: AM=NE
Bạn tự vẽ hình nha !
a) Theo đề, ta có:
N là điểm đối xứng với M qua I
mà I là trung điểm của AC hay I thuộc AC
=> N đối xứng với M qua AC.
b) Xét tam giác ABC có:
BM = CM (gt)
AI = CI (gt)
=> MI là đường trung bình của tam giác ABC
=> MI//AB
mà AB vuông góc với AC
=> MI vuông góc AC
Xét tứ giác ANCM có:
MI = NI (gt)
AI = CI (gt)
=> tứ giác ANCM là hình bình hành có MI vuông góc với AC
=> ANCM là hình thoi
c) Hình thoi ANCM là hình vuông khi đường chéo AM là phân giác của góc A
Tam giác ABC có AM vừa là phân giác vừa là trung tuyến nên tam giác ABC cân tại A .
Vậy điều kiện để ANCM là hình vuông là tam giác ABC vuông cân tại A.
XONG!!!