Câu 1 cho tam giác ABC vuông tại A, M là trung điểm của AB qua M kẻ MI song song ( I thuộc AB) kẻ IN song song AB ( N thuộc AC) điểm D đối xứng với điểm I qua N
a, chứng minh tứ giác AMIN là hình chữ nhật
b, tứ giác AICD là hình gì, vì sao
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(IN//AC\left(gt\right)\)
\(AC\perp AB\left(\widehat{A}=90^o\right)\)
\(\Rightarrow IN\perp AB\)\(hay\)\(\widehat{ANI}=90^o\)
\(Cmtt:IM//AB\left(gt\right)\)
\(AB\perp AC\left(\widehat{A}=90^o\right)\)
\(\Rightarrow IN\perp AC\)\(hay\)\(\widehat{AMI}=90^o\)
Xét tứ giác AMIN có:
\(\widehat{A}=\widehat{ANI}=\widehat{AMI}=90^o\)
Do đó tứ giác AMIN là hình chữ nhật
a) IM // AC, AB \(\perp AC\)
\(\Rightarrow\)IM \(\perp AB\) \(\Rightarrow\)\(\widehat{AMI}=90^0\)
IN // AB, AB \(\perp AC\)
\(\Rightarrow\)IN \(\perp AC\) \(\Rightarrow\)\(\widehat{ANI}=90^0\)
Tứ giác AMIN có: \(\widehat{AMI}=\widehat{MAN}=\widehat{ANI}=90^0\)
nên AMIN là hình chữ nhật
b) Hình chữ nhật AMIN là hình vuông
\(\Leftrightarrow\)AI là phân giác \(\widehat{BAC}\)
mà AI đồng thời la trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)\(\Delta ABC\)vuông cân tại A
a: Xét tứ giác AKMN có
MN//AK
AN//MK
Do đó: AKMN là hình bình hành
mà \(\widehat{NAK}=90^0\)
nên AKMN là hình chữ nhật
b: Xét ΔAMQ có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAMQ cân tại A
mà AN là đường cao
nên AN là tia phân giác của góc MAQ(1)
Xét ΔAME có
AK là đường cao
AK là đường trung tuyến
DO đó: ΔAME cân tại A
mà AK là đường cao
nên AK là tia phân giác của góc MAE(2)
Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)
hay Q,E,A thẳng hàng
a: Xét tứ giác BMNP có
BM//NP
NM//BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
N là trung điểm của CA
NP//AB
Do đó: P là trung điểm của BC
b: Sửa đề; HB//AP
Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
a) Ta có:
- I là trung điểm của BC, nên AI là đường cao của tam giác ABC và cắt AB thành hai đoạn bằng nhau.
- IM vuông góc AB và IN vuông góc AC.
Vậy tứ giác AMIN là hình chữ nhật vì có hai cạnh đối nhau bằng nhau và các góc vuông.
b) Gọi D là điểm đối xứng với A qua I. Ta có:
- AD song song với IM (vì AD và IM đều vuông góc với AB).
- AD song song với IN (vì AD và IN đều vuông góc với AC).
- Tứ giác ABDC là hình bình hành vì có hai cạnh đối nhau song song.
c) Để hình chữ nhật AMIN là hình vuông, ta cần và đủ điều kiện sau:
- AM = AI (vì AMIN là hình chữ nhật).
- Góc AMI = 90 độ (vì AMIN là hình chữ nhật).
Với tam giác ABC vuông tại A, ta có:
- AM = AI nếu và chỉ nếu tam giác ABC là tam giác cân.
- Góc AMI = 90 độ nếu và chỉ nếu tam giác ABC là tam giác vuông cân.
Vậy điều kiện để hình chữ nhật AMIN là hình vuông là tam giác ABC là tam giác vuông cân.
Bạn tự vẽ hình nha
a) Xét tứ giác AIMN có:
MI // AC
MN // AB
=> AIMN là HBH có Â = 90o
=> AIMN là HCN.
b) Ta có: +) MN // AB
M là trung điểm của AB (gt)
=> N là trung điểm của AC (1)
+) D đối xứng với I qua N
=> N là trung điểm của DI (2)
Tứ giác AICD có hai đường chéo AC và DI cắt nhau tại trung điểm N của mỗi đường.
=> AICD là HBH