K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2023

ĐKXĐ: m ≠ 0 và m ≠ 3/2

a) Đồ thị hai hàm số đã cho là hai đường thẳng song song khi:

m = 3 - 2m

m + 2m = 3

3m = 3

m = 1 (nhận)

Vậy m = 1 thì đồ thị hai hàm số đã cho là hai đường thẳng song song

b) Đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau khi

m ≠ 3 - 2m

m + 2m ≠ 3

3m ≠ 3

m ≠ 1

Vậy m ≠ 0; m ≠ 1 và m ≠ 3/2 thì đồ thị hai hàm số đã cho là hai đường thẳng cắt nhau

19 tháng 7 2019

Hàm số y = mx + 3 có các hệ số a = m, b = 3.

Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5

Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:

    m ≠ 0 và 2m + 1 ≠ 0 hay

Để học tốt Toán 9 | Giải toán lớp 9

Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)

Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:

    m = 2m + 1 => m = - 1

Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.

7 tháng 1 2018

Hàm số y = mx + 3 có các hệ số a = m, b = 3.

Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5

a) Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:

    m ≠ 0 và 2m + 1 ≠ 0 hay

Để học tốt Toán 9 | Giải toán lớp 9

Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)

Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:

    m = 2m + 1 => m = - 1

Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.

b) Đồ thị của hai hàm số y = mx + 3 và y = (2m + 1)x – 5 là hai đường thẳng cắt nhau khi và chỉ khi:

    m ≠ 2m + 1 => m ≠ -1.

Kết hợp với điều kiện trên, ta có:

Để học tốt Toán 9 | Giải toán lớp 9

10 tháng 12 2020

1. Để 2 đồ thị hàm số đã cho là hai đường thẳng song song thì

\(\left\{{}\begin{matrix}m+1=2m+1\\2m\ne3m\end{matrix}\right.\left(ĐK:m\ne-1,-\dfrac{1}{2}\right)\)

Hệ phương trình tương đương với:

\(\left\{{}\begin{matrix}m=0\\m\ne0\end{matrix}\right.\Rightarrow\text{Hệ\:phương\:trình\:vô\:nghiệm}\)

Vậy không tồn tại giả trị m để đồ thị của hai hàm số trên song song.

2. Để giao điểm hai đồ thì nằm trên trục hoành thì y = 0.

\(y=\left(m+1\right)x+2m=0\Rightarrow x=-\dfrac{2m}{m+1}\) (1)

\(y=\left(2m+1\right)x+3m=0\Rightarrow x=-\dfrac{3m}{2m+1}\) (2)

và \(m+1\ne2m+1\Rightarrow m\ne0\) (3)

Từ (1) và (2) và (3) ta tìm được m = 1.

10 tháng 12 2020

nhầm 1 chỗ nha:

"và \(m+1\ne2m+1\Rightarrow m\ne0\) (3) " 

Như vậy mới du91g.

11 tháng 12 2021

\(1,\Leftrightarrow m=2m+1\Leftrightarrow m=-1\\ 2,\Leftrightarrow a=-5\)

11 tháng 12 2021

2: a=-5

Hàm số y = mx + 3 có các hệ số a = m, b = 3.

Hàm số y = (2m + 1)x – 5 có các hệ số a' = 2m + 1, b' = -5

Vì hai hàm số là hai hàm số bậc nhất nên a và a' phải khác 0, tức là:

    m ≠ 0 và 2m + 1 ≠ 0 hay

Theo đề bài ta có b ≠ b' (vì 3 ≠ -5)

Vậy đồ thị của hai hàm số là hai đường thẳng song song với nhau khi và chỉ khi a ≠ a' tức là:

    m = 2m + 1 => m = - 1

Kết hợp với điều kiện trên ta thấy m = -1 là giá trị cần tìm.

9 tháng 11 2023

Bài 1

ĐKXĐ: m ≠ 0 và m ≠ -1/2

a) Để hai đường thẳng cắt nhau thì:

3m ≠ 2m + 1

⇔ m ≠ 1

Vậy m ≠ 0; m ≠ -1/2 và m ≠ 1 thì hai đường thẳng đã cho cắt nhau

b) Để hai đường thẳng song song thì:

3m = 2m + 1

⇔ m = 1 (nhận)

Vậy m = 1 thì hai đường thẳng đã cho song song

9 tháng 11 2023

Bài 2

ĐKXĐ: m ≠ 0 và m ≠ -1/2

a) Để hai đường thẳng đã cho cắt nhau thì:

3m ≠ 2m + 1

⇔ m ≠ 1 

Vậy m ≠ 0; m ≠ -1/2; m ≠ 1 thì hai đường thẳng đã cho cắt nhau

b) Để hai đường thẳng trùng nhau thì:

3m = 2m + 1 và 4 - m² = 3

*) 3m = 2m + 1

⇔ m = 1 (nhận)  (*)

*) 4 - m² = 3

⇔ m² = 4 - 3

⇔ m² = 1

⇔ m = 1 (nhận) hoặc m = -1 (nhận)  (**)

Từ (*) và (**) ⇒ m = 1 thì hai đường thẳng đã cho trùng nhau

c) Để hai đường thẳng đã cho song song thì:

3m = 2m + 1 và 4 - m² ≠ 3

*) 3m = 2m + 1

⇔ m = 1 (nhận) (1)

*) 4 - m² ≠ 3

⇔ m² ≠ 1

⇔ m ≠ 1 (nhận) và m ≠ -1 (nhận) (2)

Từ (1) và (2) ⇒ Không tìm được m để hai đường thẳng đã cho song song

d) Để hai đường thẳng vuông góc thì:

3m.(2m + 1) = -1

⇔ 6m² + 3m + 1 = 0 (3)

Ta có:

6m² + 3m + 1 = 6.(m² + m/2 + 1/6)

= 6.(m² + 2.m.1/4 + 1/16 + 5/48)

= 6(m + 1/4)² + 5/8 > 0 (với mọi m)

⇒ (3) là vô lý

Vậy không tìm được m để hai đường thẳng đã cho vuông góc