K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Đề bạn sao sao ấy? Ko đủ đề à?

1: Xét (O) có

CA,CM là tiếp tuyến

=>CA=CM và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COM+góc DOM=1/2(góc MOA+góc MOB)

=>góc COD=1/2*góc AOB=90 độ

2: CD=CM+MD

mà CM=CA và MD=DB

nên CD=CA+DB

3: AC*BD=CM*MD

Xét ΔOCD vuông tại O có OM là đường cao

nên CM*MD=OM^2

=>AC*BD=R^2 không đổi

12 tháng 2 2022

đây ko phải toán 1

a: Xét (O) có

CM,CA là tiếp tuyến

=>CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

=>ΔCOD vuông tại O

b: AC*BD=CM*DM=OM^2=R^2

28 tháng 8 2023

Ta có:

�1^+�2^+�3^+�4^=180�

⇔�2^+�2^+�3^+�3^=180� (do �1^=�2^, �3^=�4^)

⇔2�2^+2�3^=180�⇔�2^+�3^=90�⇔���^=90�

b)

Ta có: CM = AC, MD = BD (chứng minh trên)

Lại có: CD = CM + MD = AC + BD (đcpcm)

c)

Ta có: CM = AC, MD = BD (chứng minh trên)

Xét tam giác COD vuông tại O

Áp dụng hệ thức lượng trong tam giác vuông có:

��2=��.��=��.��=�2 (do MO = R)

Vì bán kính đường tròn không đổi khi M di chuyển trên nửa đường tròn nên  không đổi do đó tích AC. BD không đổi khi M di chuyển trên nửa đường tròn.

19 tháng 12 2021

2: Xét tứ giác BDMO có 

\(\widehat{DBO}+\widehat{DMO}=180^0\)

Do đó: BDMO là tứ giác nội tiếp

15 tháng 11 2015

c) Gọi giao điểm của BM với Ax là I. Từ M kẻ MK vuông góc với AB. BC cắt MK tại E.

Vì MK vuông góc AB => MK // AC // BD

EK // AC => \(\frac{EK}{AC}=\frac{BE}{BC}\); ME // IC => \(\frac{ME}{IC}=\frac{BE}{BC}\) => \(\frac{EK}{AC}=\frac{ME}{IC}\)

Tam giác MIA vuông tại M có CA = CM => góc CAM = góc CMA => góc CIM = góc CMI => tam giác CMI cân tại C => CI = CM => CM = CI = CA => EK = ME.

\(EK=ME\Rightarrow\frac{EK}{BD}=\frac{ME}{BD}\)mà \(\frac{ME}{BD}=\frac{CM}{CD}=\frac{AK}{AB}\Rightarrow\frac{EK}{BD}=\frac{AK}{AB}\)

=> Tam giác AKE đồng dạng với tam giác ABD (c.g.c) => góc EAK = góc DAK => A,E,D thẳng hàng => BC cắt AD tại E mà theo giả thiết BC cắt AD tại N => E trùng với N => H trùng với K => N là trung điểm MH.