K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

\(\int\dfrac{x}{\sqrt{1-x^2}}dx=-\dfrac{1}{2}\int\dfrac{1}{\sqrt{1-x^2}}d(1-x^2)=-\sqrt{1-x^2}\)

22 tháng 3 2017

quá đơn giản...kkk

2 tháng 2 2016

Hỏi đáp Toán

2 tháng 2 2016

tks cậu

NV
26 tháng 8 2020

8.

\(I=\int sinx.cos2xdx=\int\left(2cos^2x-1\right)sinxdx\)

\(=\int\left(1-2cos^2x\right)d\left(cosx\right)=cosx-\frac{2}{3}cos^3x+C\)

9.

\(I=\int\frac{sin2x}{1+cos^2x}dx=-\int\frac{2\left(-sinx\right).cosx}{1+cos^2x}dx=-\int\frac{d\left(cos^2x\right)}{1+cos^2x}\)

\(=-ln\left|1+cos^2x\right|+C\)

NV
26 tháng 8 2020

6.

\(I=\int cos^3xdx=\int\left(1-sin^2x\right)cosxdx\)

\(=\int\left(1-sin^2x\right)d\left(sinx\right)=sinx-\frac{1}{3}sin^3x+C\)

7.

\(I=\int sin^2x.cos^3xdx=\int sin^2x\left(1-sin^2x\right)cosxdx\)

\(=\int\left(sin^2x-sin^4x\right)d\left(sinx\right)=\frac{1}{3}sin^3x-\frac{1}{5}sin^5x+C\)

NV
27 tháng 2 2021

\(I=\dfrac{1}{2}\int f\left(x^2\right)d\left(x^2\right)=\dfrac{1}{2}x^2\sqrt{\left(x^2\right)^2+1}+C=\dfrac{1}{2}x^2\sqrt{x^4+1}+C\)

27 tháng 2 2021

undefined

Làm tiếp

\(t=\sqrt{x^4+1}\Rightarrow dt=\dfrac{1}{2}.\left(x^4+1\right)^{-\dfrac{1}{2}}.4.x^3=\dfrac{2x^3}{\sqrt{x^4+1}}dx\Rightarrow dx=\dfrac{1}{2}.\dfrac{\sqrt{x^4+1}dt}{x^3}dt\)

\(\Rightarrow\int x.\dfrac{2x^4+1}{\sqrt{x^4+1}}dx=\dfrac{1}{2}\int x.\dfrac{2x^4+1}{\sqrt{x^4+1}}.\dfrac{\sqrt{x^4+1}}{x^3}dt=\dfrac{1}{2}\int\dfrac{2x^4+1}{x^2}dt=\dfrac{1}{2}\int2x^2dt+\dfrac{1}{2}\int\dfrac{dt}{x^2}=\int\sqrt{t^2-1}dt+\dfrac{1}{2}\int\dfrac{dt}{\sqrt{t^2-1}}\)

Tất cả đã về dạng cơ bản

Xet \(I_1=\int\sqrt{t^2-1}dt\)

\(\sqrt{t^2-1}=\dfrac{1}{2}.\dfrac{2t^2-1}{\sqrt{t^2-1}}-\dfrac{1}{2\sqrt{t^2-1}}=\dfrac{1}{2}\left(\sqrt{t^2-1}+\dfrac{t^2}{\sqrt{t^2-1}}\right)-\dfrac{1}{2\sqrt{t^2-1}}\)

\(\left(t\sqrt{t^2-1}\right)'=\sqrt{t^2-1}+\dfrac{t^2}{\sqrt{t^2-1}}\)

\(\Rightarrow\int\sqrt{t^2-1}dt=\dfrac{1}{2}\int\left(t\sqrt{t^2-1}\right)'dt-\dfrac{1}{2}\int\dfrac{dt}{\sqrt{t^2-1}}=\dfrac{1}{2}\left(t\sqrt{t^2-1}\right)-\dfrac{1}{2}ln\left|t+\sqrt{t^2-1}\right|+C\)

\(\Rightarrow I=\dfrac{1}{2}t\sqrt{t^2-1}-\dfrac{1}{2}ln\left|t+\sqrt{t^2-1}\right|+\dfrac{1}{2}ln\left|t+\sqrt{t^2-1}\right|=\dfrac{1}{2}t\sqrt{t^2-1}=\dfrac{1}{2}.x^2\sqrt{x^4+1}+C\)

25 tháng 12 2016

đặt \(x=\frac{\sqrt{3}}{cost};\forall t\in\left(0;\frac{\pi}{2}\right)\Rightarrow tant>0\)

\(dx=d\left(\frac{\sqrt{3}}{cost}\right)=\frac{-\sqrt{3}sint}{cos^2t}dt\)

Thay vào, ta có \(\int\frac{\sqrt{3}\cdot\frac{-\sqrt{3}sint}{cos^2t}}{\frac{\sqrt{3}}{cost}\sqrt{\frac{3}{cos^2t}-3}}dt=\int\frac{-3\cdot\frac{sint}{cos^2t}}{\frac{3}{cost}\cdot\sqrt{tan^2t}}dt=\int\frac{-sint}{cost\cdot tant}dt=-\int dt=-t+C\)

Bây giờ thay t vào là ra

25 tháng 12 2016

tính ra \(I=\frac{-\pi}{6}\) nhé

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 2)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)

Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)

Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 3:

\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)

\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)

Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)

20 tháng 1 2017

lm jup mk di m.n

25 tháng 12 2016

1) Đặt \(t=1+\sqrt{x-1}\Leftrightarrow x=\left(t-1\right)^2+1\forall t\ge1\Rightarrow dx=d\left(t-1\right)^2=2dt\)

\(\Rightarrow I_1=\int\frac{\left(t-1\right)^2+1}{t}\cdot2dt=2\int\frac{t^2-2t+2}{t}dt=2\int\left(t-2+\frac{2}{t}\right)dt\\ =t^2-4t+4lnt+C\)

Thay x vào ta có...

25 tháng 12 2016

2) \(I_2=\int\frac{2sinx\cdot cosx}{cos^3x-\left(1-cos^2x\right)-1}dx=\int\frac{-2cosx\cdot d\left(cosx\right)}{cos^3x+cos^2x-2}=\int\frac{-2t\cdot dt}{t^3+t-2}\)

\(I_2=\int\frac{-2t}{\left(t-1\right)\left(t^2+2t+2\right)}dt=-\frac{2}{5}\int\frac{dt}{t-1}+\frac{1}{5}\int\frac{2t+2}{t^2+2t+2}dt-\frac{6}{5}\int\frac{dt}{\left(t+1\right)^2+1}\)

Ta có:

\(\int\frac{2t+2}{t^2+2t+2}dt=\int\frac{d\left(t^2+2t+2\right)}{t^2+2t+2}=ln\left(t^2+2t+2\right)+C\)

\(\int\frac{dt}{\left(t+1\right)^2+1}=\int\frac{\frac{1}{cos^2m}}{tan^2m+1}dm=\int dm=m+C=arctan\left(t+1\right)+C\)

Thay x vào, ta có....