1. CMR:
a, 76 + 75 - 74 chia hết cho 11
b, 109 + 108 + 107 chia hết cho 112
2. CMR:
128 x 912 = 1816
7520 = 4510 x 530
3, Cho A = 3 + 32 + 33+...........+ 310.
Tìm số tự nhiên biết rằng 2A + 3 = 3n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
280 chia hết cho x ; 700 chia hết cho x ; 420 chia hết cho x và 40 < x < 100
=> x ∈ ƯC( 280 ; 700 ; 420 ) và 40 < x < 100
280 = 23 . 5 . 7
700 = 22 . 52 . 7
420 = 22 . 3 . 5 . 7
=> ƯCLN( 280 ; 700 ; 420 ) = 22 . 5 . 7 = 140
=> ƯC( 280 ; 700 ; 420 ) = Ư(140) = { 1 ; 2 ; 4 ; 5 ; 7 ; 10 ; 14 ; 20 ; 28 ; 35 ; 70 ; 140 }
mà 40 < x < 100
=> x = 70
280 chia hết cho x ; 700 chia hết cho x ; 420 chia hết cho x và 40 < x < 100
=> x ∈ ƯC( 280 ; 700 ; 420 ) và 40 < x < 100
280 = 23 . 5 . 7
700 = 22 . 52 . 7
420 = 22 . 3 . 5 . 7
=> ƯCLN( 280 ; 700 ; 420 ) = 22 . 5 . 7 = 140
=> ƯC( 280 ; 700 ; 420 ) = Ư(140) = { 1 ; 2 ; 4 ; 5 ; 7 ; 10 ; 14 ; 20 ; 28 ; 35 ; 70 ; 140 }
mà 40 < x < 100
=> x = 70
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
Bài 2:
\(x^5=x^3\)
\(\Rightarrow x^5-x^3=0\)
\(\Rightarrow x^3\left(x^2-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc \(x^2-1=0\)
+) \(x^3=0\Rightarrow x=0\)
+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)
Vậy \(x\in\left\{0;1;-1\right\}\)
Bài 1:
a: \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\cdot55⋮11\)
b: \(10^9+10^8+10^7\)
\(=10^7\left(10^2+10+1\right)=10^7\cdot111⋮111\)