K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

pt 3 cạnh của tam giác là pt từng cạnh à

18 tháng 1 2017

UKM, ĐÚNG R

3 tháng 5 2017

3. Gọi tam giác đó là ABC với góc A vuông, các đường trung trực ứng với cạnh AB, AC lần lượt là MN,PQ; D là trung điểm cạnh huyền AC

Có : MN song song với AC và đi qua M là trung điểm của AB => N là trung điểm của BC(t/c đường trung bình) => N trùng với D

       PQ song song với AB và đi qua P là trung điểm của AC => Q là trung điểm của BC(t/c đường trung bình) => Q trùng với D

MN cắt PQ tại trung điểm D của BC

Mà đường trung bình của BC đi qua D

=> Giao điểm 3 đường trung trực là D trung điểm cạnh huyền BC

2 tháng 6 2019

Đáp án B

Tam giác đều cạnh x có bán kính đường tròn ngoại tiếp là

 

Với mi tam giác đề bài cho, độ dài cạnh tam giác sau bẳng 1 2  độ dài cạnh tam giác trước.

Khi đó

 

D thấy

 là tng cp số nhân lùi vô hn

 

Vậy tổng cần tính là

1: Xét ΔBAM và ΔBNM có

BA=BN

góc ABM=goc NBM

BM chung

Do đó: ΔBAM=ΔBNM

2: ΔBAM=ΔBNM

=>MA=MN

mà BA=BN

nên BM là trung trực của AN

=>I là trung điểm của AN

3: góc ABC+góc C=90 độ

góc NMC+góc C=90 độ

=>góc ABC=góc NMC

M là trung điểm của BC

=>\(\left\{{}\begin{matrix}x_B+x_C=2\cdot x_M=2\cdot2=4\\y_B+y_C=2\cdot y_M=2\cdot3=6\end{matrix}\right.\)(1)

N là trung điểm của AC

=>\(\left\{{}\begin{matrix}x_A+x_C=2\cdot x_N=2\cdot4=8\\y_A+y_C=2\cdot y_N=2\cdot\left(-1\right)=-2\end{matrix}\right.\left(2\right)\)

P là trung điểm của AB

=>\(\left\{{}\begin{matrix}x_A+x_B=2\cdot x_P=2\cdot\left(-3\right)=-6\\y_A+y_B=2\cdot y_P=2\cdot5=10\end{matrix}\right.\)(3)

Từ (1),(2),(3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_B+x_C=4\\x_A+x_C=8\\x_A+x_B=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B=4-x_C\\x_A=8-x_C\\4-x_C+8-x_C=-6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12-2x_C=-6\\x_B=4-x_C\\x_A=8-x_C\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=9\\x_B=4-9=-5\\x_A=8-9=-1\end{matrix}\right.\)

Từ (1),(2),(3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}y_B+y_C=6\\y_A+y_C=-2\\y_A+y_B=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_B=6-y_C\\y_A=-2-y_C\\6-y_C-2-y_C=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4-2\cdot y_C=10\\y_B=6-y_C\\y_A=-2-y_C\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_C=-3\\y_B=6+3=9\\y_A=-2+3=1\end{matrix}\right.\)

Vậy: C(9;-3); B(-5;9); A(-1;1)

Gọi (d1): ax+by+c=0 là phương trình đường thẳng AB

A(-1;1); B(-5;9)

\(\overrightarrow{AB}=\left(-4;8\right)=\left(-1;2\right)\)

=>VTPT là (2;1)

Phương trình AB là:

2[x-(-1)]+1(y-1)=0

=>2(x+1)+1(y-1)=0

=>2x+2+y-1=0

=>2x+y+1=0

Gọi (d2): ax+by+c=0 là phương trình đường thẳng AC

A(-1;1); C(9;-3)

\(\overrightarrow{AC}=\left(10;-4\right)=\left(5;-2\right)\)

=>VTPT là (2;5)

Phương trình AC là:

2(x+1)+5(y-1)=0

=>2x+2+5y-5=0

=>2x+5y-3=0

Gọi (d3): ax+by+c=0 là phương trình đường thẳng BC

B(-5;9); C(9;-3)

\(\overrightarrow{BC}=\left(14;-12\right)=\left(7;-6\right)\)

=>VTPT là (6;7)

Phương trình đường thẳng CB là:

6(x+5)+7(y-9)=0

=>6x+30+7y-63=0

=>6x+7y-33=0

\(\overrightarrow{BC}=\left(7;-6\right)\)

=>VTPT là (6;7)

mà trung điểm của BC là M(2;3)

nên Phương trình đường trung trực của BC là:

\(6\left(x-2\right)+7\left(y-3\right)=0\)

=>6x-12+7y-21=0

=>6x+7y-33=0

C(9;-3); B(-5;9); A(-1;1)

\(\overrightarrow{AC}=\left(10;-4\right)=\left(5;-2\right)\)

=>VTPT là (2;5)

Phương trình đường trung trực của AC là:

\(2\left(x-4\right)+5\left(y+1\right)=0\)

=>2x-8+5y+5=0

=>2x+5y-3=0

\(\overrightarrow{AB}=\left(-4;8\right)=\left(-1;2\right)\)

=>VTPT là (2;1)

Phương trình trung trực của AB là:

\(2\left(x+3\right)+1\left(y-5\right)=0\)

=>2x+6+y-5=0

=>2x+y+1=0